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PREFACE 
 

The topic of the Principal Lectures for the forty-ninth year of the program was  
“Boundary Layers”.  The subject centers around those problems in which the boundary 
conditions lead to a large gradient near the boundary.  Nine of this year’s principal 
lectures were given by Joe Pedlosky and the tenth was given by Steve Lentz.  The fluid 
mechanics of boundary layers was reviewed, first starting from its classical roots and 
then extending the concepts to the sides, bottoms, and tops of the oceans.  During week 
four, a mini-symposium on “Ocean Bottom and Surface Boundary Layers” gathered a 
number of oceanographers and meteorologists together to report recent advances.  And, 
finally, Kerry Emanuel of MIT delivered the Sears Public Lecture to a packed hall in 
Clark 507.  The title was “Divine Wind:  The History and Sciences of Hurricanes.”   
 

The ten student projects continue to constitute the heart of the summer GFD 
experience.  These are studies of new, original, and tractable problems by our fellows, 
who are in the midst of their graduate work.  Some of the studies are already continuing 
to grow to full projects to be published in due course.  Whatever the results of this 
summer’s experience are for each fellow, be it a fully finished work, new ideas, fearless 
and honest inquiry, or simply experience working with a staff member in our craft, we 
wish our fellows well in their future studies and research. 
 

Special thanks go to a number of people who served to make the program flow 
smoothly.  Jeanne Fleming and Penny Foster ran the office and performed administrative 
work for the many visits and lectures.  Their work in preparation during the “slack” 
season (completely misnamed) is especially appreciated.  Janet Fields helps with all 
aspects of the academic programs for the fellows and, as usual, did a superb job.  Keith 
Bradley created apparatus for a number of laboratory experiments, plus helped with odd 
tasks such as repairing old bicycles.  George Veronis ran the world-class softball team 
that counted a number of wins in the season, including a victory over the staff, who, 
although ever wiser, never seem to age. 
 

We extend our sincere thanks to the National Science Foundation for support for this 
program under OCE-0325296.  Support was also provided by the Office of Naval 
Research, Processes and Prediction Division, Physical Oceanography Program, under 
grant N00014-07-10776. 
 
      Jack Whitehead and Claudia Cenedese, 
       Co-Directors 
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Boundary Layers

Lecture 1 by Rebecca Dell

The idea of a ‘boundary layer’ dates back at least to the time of Ludwig Prandtl. In 1904, he
said:

I have set myself the task of investigating systematically the motion of a fluid of which
the internal resistance can be assumed very small. In fact, the resistance is supposed to
be so small that it can be neglected wherever great velocity differences or cumulative
effects of the resistance do not exist. This plan has proved to be very fruitful, for one
arrives thereby at mathematical formulations which not only permit problems to be
solved but also give promise of providing very satisfactory agreement with observations.

. . . the investigation of a particular flow phenomenon is thus divided into two interde-
pendent parts: there is on the one hand the free fluid, which can be treated as inviscid
according to the vorticity principles of Helmholtz, and on the other hand the transition
layers at the fixed boundaries, the movement of which is controlled by the free fluid,
yet which in turn give the free movement its characteristic stamp by the emission of
vortex sheets. (H. Rouse and S. Ince. History of Hydrodynamics. New York: Dover,
1957, p269.)

Prandtl’s central observation was that the the motion of a fluid of small viscosity could be separated
into two interdependent parts: the free fluid and the boundary layer. The mathematical description
of each would be quite different, but each would affect the other by the necessity of matching the
two flows together. Physically, the free fluid forces the outer edge of the boundary layer, while the
boundary layer diffuses vorticity into the free fluid. For more information about Prandtl, see the
article in Physics Today, 2005, v.58, no.12, 42-48.

To get an idea of how this interplay between the boundary layer and the free fluid manifests itself
mathematically, let’s consider a couple of governing equations for geophysical fluid flow. Consider
the Navier–Stokes equation

ρ
∂ui

∂t
+ ρuj

∂ui

∂xj
= − ∂p

∂xi
+ ρFi + µ

∂2ui

∂xj∂xj
.

The final term expresses the effects of friction. If µ is small, as in most geophysical flows, the
standard approximation is to neglect the final term. However, it is also the highest order term
in the Navier–Stokes equation; neglecting it reduces the order of the equation and so reduces the
number of boundary conditions that can be satisfied simultaneously. This is called a singular
perturbation. We need to simplify our equation to make it mathematically tractable, but we must
still satisfy our boundary conditions. To do this, it is necessary to find a way to retain the higher
order derivatives only where necessary. The method for doing this is called boundary layer theory,
which is a form of singular perturbation theory. In physical terms rather than mathematical terms,
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we apply boundary layer theory to understand the interplay between the localized viscous regions
and the inviscid bulk of the fluid outside these regions.

To build intuition, let us consider another example. As we will learn in later chapters, the
streamfunction of the steady, wind–driven ocean circulation is given by

εJ(Ψ,∇2Ψ)︸ ︷︷ ︸
Nonlinear Advection of Vorticity

+
∂Ψ
∂x︸︷︷︸

Planetary Vorticity Gradient

= −r∇2Ψ︸ ︷︷ ︸
Bottom Friction

+ ν∇4Ψ︸ ︷︷ ︸
Lateral Friction

+ T (x, y)︸ ︷︷ ︸
Wind Forcing

.

In this equation, ε = U
βL2 is the Rossby number, and r and ν are nondimensional forms of the

coefficients of bottom and lateral friction. Far from continental margins, in the free fluid, the dom-
inant balance is between the advection of planetary vorticity and the wind forcing. The retention
of only these two terms lowers the order of the equation. Any of the higher order terms—bottom
friction, lateral friction, or advection— could be important in a restricted region of the flow along
the boundaries. Generally, we think of boundary layers as a frictional effect, but it is important
to realize that friction is not the sole source of boundary layers; inviscid nonlinear advection can
create a boundary layer as well. This equation will be discussed in future lectures in great detail.
For now, it is sufficient to recognize that boundary layer effects, such as the Gulf Stream, are clearly
possible.

Looking ahead, the remaining lectures will adhere roughly to the following outline:

Linear Boundary Layer Theory : Ekman layers; boundary layers in a density–stratified fluid;
boundary layer control of the interior; experimental applications

Coastal Bottom Boundary Layers : Boundary layers on the coastal shelf in cases of upwelling
and downwelling; Observations (by S. Lentz)

Boundary Layers in the General Oceanic Circulation : Sverdrup theory; Stommel, Munk,
and intertial boundary layers; inertial runaway; the thermocline and its boundary layer struc-
ture

1 Ekman Layers

Starting right in on linear boundary layer theory, let us derive the Ekman layer of a homogeneous
fluid. The Ekman layer, described by Walfrid Ekman in 1902 in his doctoral dissertation, is a
horizontal boundary layer in a rotating fluid. Such layers exist at the top and bottom of the ocean
and at the bottom of the atmosphere. First, let’s consider the steady equations of motion for an
unstratified geophysical flow of uniform depth in a rotating coordinate frame

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− 2Ωv = −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ 2Ωu = −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2

)
u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −1

ρ

∂p

∂z
+ ν

(
∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2

)
+ g

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0.
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Figure 1: Ekman Layer Problem Setup

By omitting the energy equation, we implicitly assume that ρ = constant.
To derive the Ekman layer, we assume the fluid is flowing over an infinite flat plate, and far

from the plate the fluid has velocity U , as shown in Figure 1. For simplicity, we assume that the
far field velocity is constant in the down–stream direction, though it may vary in the cross–stream
direction. We align our x–coordinate with the flow, so that U = U(y), and we expect all quantities
to be unvarying with x, ( ∂

∂x = 0). Additionally, we rescale all lengths by some typical length scale
L and all velocities by some typical velocity U0. We assume that a natural length scale can be
found, for example from some boundary far away or from the lateral scale of variations in U(y).
The above system of equations then becomes

ε

(
v
∂u

∂y
+ w

∂u

∂z

)
− v =

E

2

(
∂2u

∂y2
+

∂2u

∂z2

)
(1)

ε

(
v
∂v

∂y
+ w

∂v

∂z

)
+ u = −∂p

∂y
+

E

2

(
∂2v

∂y2
+

∂2v

∂z2

)
(2)

ε

(
v
∂w

∂y
+ w

∂w

∂z

)
= −∂p

∂z
+

E

2

(
∂2w

∂y2
+

∂2w

∂z2

)
(3)

∂v

∂y
+

∂w

∂z
= 0. (4)

In these equations, our dimensionless parameters are the Rossby number, ε = U0
2ΩL , and the Ekman

number, E = ν
ΩL2 . Note that we have rescaled p by ρ2ΩU0, and we have removed the hydrostatic

component of the pressure, −ρgz. We will also enforce two conditions at the lower boundary z = 0:
no slip, that is u = v = 0; and no normal flow, that is w = 0.

We know that far from the boundary in the interior of the fluid, the velocity uI must be given
by

uI = U(y).

If we assume that both ε and E are in some sense ‘small’, equation (2) tells us that in the interior

pI = −
∫ y

U(y′)y′. (5)

This is a statement of geostrophy—the pressure and the rotation are the dominant balance. Equa-
tions (1) and (4) then imply vI = 0 and wI = 0. This solution satisfies all of the governing
equations, but it does not satisfy a no–slip condition applied at z = 0. In order to satisfy this
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condition, we turn to a boundary layer. The boundary layer is expected to be very thin, so it is
more convenient to examine it in a ‘stretched’ coordinate—a coordinate in which the boundary
layer thickness is O(1). In the boundary layer, the dominant physical process will be a balance
between rotation and viscosity. In equations (1) to (4) the rotational terms are already O(1), and
to make the viscosity terms the same order, each vertical derivative must be O( 1√

E
). Therefore,

we rescale z as
z =

√
Eζ.

This corresponds to rescaling heights by δ, where:

δ =
√

ν

Ω
(6)

is the thickness of the boundary layer, and it arises, as we said, from the balance of viscosity ν and
rotation Ω. Since we are rescaling our vertical coordinate, we must similarly rescale our vertical
velocity; let us define W (y, ζ) ≡ w√

E
. The chain rule tells us

∂

∂z
=

1√
E

∂

∂ζ
;

∂2

∂z2
=

1
E

∂2

∂ζ2
.

Our governing equations (1) – (4) now become

ε

(
v
∂u

∂y
+ W

∂u

∂ζ

)
− v =

1
2

(
E

∂2u

∂y2
+

∂2u

∂ζ2

)
(7)

ε

(
v
∂v

∂y
+ W

∂v

∂ζ

)
+ u = −∂p

∂y
+

1
2

(
E

∂2v

∂y2
+

∂2v

∂ζ2

)
(8)

εE

(
v
∂W

∂y
+ W

∂W

∂ζ

)
= −∂p

∂ζ
+

E

2

(
E

∂2W

∂y2
+

∂2W

∂ζ2

)
(9)

∂v

∂y
+

∂W

∂ζ
= 0. (10)

Since we have included E in the scaling of ζ, in the limit where E → 0 we remain in the boundary
layer and friction remains important. If we again consider the Rossby number ε and the Ekman
number E small with respect to one, these become:

− v =
1
2

∂2u

∂ζ2
(11)

+u = −∂p

∂y
+

1
2

∂2v

∂ζ2
(12)

0 = −∂p

∂ζ
(13)

∂v

∂y
+

∂W

∂ζ
= 0. (14)

Equation (13) tells us that we expect the pressure to be constant throughout the depth of the
boundary layer, and so to be equal to its value in the inviscid interior, given by equation (5). The
y–momentum equation (12) then becomes

u− U =
1
2

∂2v

∂ζ2
. (15)
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The easiest way to solve the coupled equations (11) and (15) is to define a complex variable
Λ = (u− U) + iv. The two equations can then be expressed as a single complex equation

∂2Λ
∂ζ2

= 2iΛ.

This second–order equation has two solutions, but we discard the unbounded solution, leaving
Λ = Λ0e

−(1+i)ζ . Retaining only the real part of this, we find

u = U + e−ζ (−A cos ζ + B sin ζ)
v = e−ζ (A sin ζ + B cos ζ) .

Our no–slip boundary condition gives A = U(y) and B = 0, so our final solution is

u = U(y)
(
1− e−ζ cos ζ

)
(16)

v = U(y)e−ζ sin ζ. (17)

These solutions, normalized by U(y), are plotted in Figure 2. They have the satisfying characteristic
that as you move far from the boundary (as ζ →∞), they approach the far–field solution of u = U
and v = 0. These same solutions are shown in Figure 3 as a hodograph, which traces out the
direction of the total horizontal velocity vector. At the boundary z = ζ = 0, the flow is at an
angle of 45◦ to the far–field flow, and as ζ increases the velocity traces out a spiral, known as the
Ekman spiral. It is interesting to note that Ekman began his investigations into boundary layers in
rotating frames because Fridtjof Nansen observed from the deck of the Fram that icebergs in the
Nordic Seas tend to move at an angle of 45◦ to the wind. Here we see that same observation arise
in the mathematics.

At this point it is worth pausing briefly to consider physically what is happening. As fluid flows
over the frictional plate, vorticity is generated at the boundary. This vorticity diffuses upward into
the bulk of the fluid, tilting lines of planetary vorticity, 2Ω. At the same time, this diffusion is
balanced and cancelled by the tilting of lines of constant vorticity caused by the rotation of the
frame. Far from the plate, these two effects balance completely. The thickness of the boundary
layer δ is the distance over which the vorticity shed from the bottom boundary moves before being
balanced and cancelled by the tilting of planetary vorticity. It is a diffusive and inertial scale.

Now let us return to our calculated solution for velocity in the boundary layer, equations (16)
and (17). As we are in a rotating frame, we generally expect flow to be along lines of constant
pressure, called isobars. In the far field, pressure and velocity are both purely functions of y, and
we see flow in the x–direction. However, in the boundary layer v 6= 0; we get flow across isobars.
The combination of bottom friction and a rotating frame creates flow down the pressure gradient
and perpendicular to the free fluid velocity. The total transport of this perpendicular velocity is
given by ∫ ∞

0
vdz = δ

∫ ∞

0
vdζ =

δ

2
U(y).

This perpendicular transport is known as the Ekman flux. If U(y) is not constant, then our Ekman
layer solution is horizontally divergent or convergent. By continuity (equation 14), this induces
vertical motion, forcing fluid out of or into the boundary layer. This induced vertical motion is
also referred to as the Ekman pumping. We find

W = −1
2

∂U

∂y
[1− e−ζ (cos ζ + sin ζ)].
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Figure 2: Velocity components in the boundary layer. Note the overshoot of the velocity profile at
u ≈ 2 and the oscillatory nature of the profile. This reflects the underlying inertial wave dynamics.
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Figure 3: Ekman layer hodograph. This shows the line traced by the velocity vector as distance
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To derive this, we used the boundary condition that W (ζ = 0) = 0. As we move far away from the
bottom boundary, the lower boundary condition on the interior flow is

wI(y, 0) =
√

EW (y, ζ →∞) = −1
2

√
EUy.

The combination of rotation and dissipation forces convergence in the boundary layer, which in turn
creates a vertical velocity throughout the interior of the fluid. This vertical velocity is proportional
to the vorticity of the interior flow. In the ocean, Ekman pumping is driven by layers at the surface
and bottom. The surface Ekman pumping is on the order of 10−6ms−1, but it is enough to force
the large–scale circulation of the entire ocean.

2 Spin Down

The vertical velocity we just calculated can have many substantial effects, including spinning down
the fluid through vorticity conservation. If Ekman pumping forces fluid out of the boundary layer
and into the overlying fluid, it will vertically compress the vortex tube of that fluid, an effect
sometimes referred to as ‘vortex squashing’. Conservation of circulation requires that the radial
velocity in a vortex tube declines as the radius of the tube expands. This is described by the
vorticity equation

dω

dt
= ω · ∇u + Dissipation.

For small ε in the interior, this reduces to

ε
dω

dt
=

∂w

∂z
. (18)

ω is the vertical component of the vorticity, given by

ω =
∂v

∂x
− ∂u

∂y
= −∂U

∂y
.

Equation (18) comes from taking the full vorticity equation, expanding in ε, and throwing out the
higher order terms. We can integrate this equation over the depth of the fluid from the top of
the boundary layer up. We know that ω is independent of z by the Taylor–Proudman effect for
homogeneous fluids. Therefore, the left hand side is unchanged by integration. The right hand side
simply gives us the difference between the vertical velocity at the bottom of our domain—which
we know—and the vertical velocity at the top of our domain—which we assume is zero. We get

ε
dω

dt
= −

√
E × w(z = 0)

=
√

E
1
2

dU

dy
= −ω

2

√
E.

The solution to this ODE is just an exponential decay, with non–dimensional decay time

T =
2ε√
E

.
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In dimensional units, this is

T =
L

U0

2U0

2ΩL

√
ΩL2

ν
=

L√
Ων

.

This is the ‘spin–down time’ of the system, the characteristic time it takes for the vorticity from the
bottom boundary to diffuse into the free fluid. It is so–called because it is the time scale over which
the fluid would come to rest with respect to the bottom boundary. It is long compared with the
rotation period of the system Ω, but it is short compared with the diffusion time of the system, L2

ν .
This scale tells us that the larger the rotation rate, the less important viscosity becomes. However,
the larger the rotation rate, the more rapidly the fluid is expected to spin down. This is because
the coupling between the boundary layer and the interior is inertial, not viscous. The coupling of
the inviscid vorticity dynamics of the interior and the viscous dynamics of the boundary layer is
through vortex stretching.

3 Nonlinear Modifications of Ekman Layer

So far we have discussed only the linear theory of rotating boundary layers, however we can expect
that introducing nonlinearity will both add terms and potentially change the structure of the
solution. As we saw in equation (6), the thickness of the boundary layer is roughly given by the
ratio of the effect of viscosity and rotation

δ ∼
√

viscosity
rotation

.

When we consider nonlinearity, we add the effects of advection, manifest as local vorticity. We
therefore might guess that the thickness of the nonlinear boundary layer is given by something like

δ =
√

2ν

f + ω
.

In this f = 2Ω is the so–called Coriolis parameter and ω is the local or relative vorticity as before.
However, the addition of relative vorticity has two competing effects. It causes the boundary layer
to be thinner by the above equation, but at the same time it induces positive vertical velocity in
the interior. This vertical velocity carries vorticity from the lower boundary upward, thickening the
region affected by the presence of the boundary—that is thickening the boundary layer. A priori
it is not obvious which of these effects is stronger and if the BL will get thicker or thinner. An
exercise to develop intuition about problems of this type is to calculate the boundary layer flow
over a non-rotating plate which has a uniform downward velocity through its surface.

To gain a quantitative insight into the net effect of this nonlinearity, we want to concentrate
our attention on the scale at which it is most relevant, in the transition region between the Ekman
layer and the free fluid interior. In this transitional region, we expect inertial effects—and therefore
relative vorticity—to be as important as viscosity. In order for viscous and inertial effects to both
be O(1) in equations (7) – (10), we must again rescale our vertical coordinate, this time by the
Rossby number ε

Z = εζ =
ε√
E

z.

We now have three scales: the Ekman scale, where viscosity and rotation balance; the transitional
scale, where viscosity and inertia balance; and the large scale of the free fluid, which we treat as
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invsicid. We assume that these scales are so well separated that we can treat Z and ζ as independent
variables. By the chain rule, we then find

∂

∂z
=

√
1
E

∂

∂ζ
+ ε

√
1
E

∂

∂Z
.

Our equations of motion (1)–(4) become

ε

(
v
∂u

∂y
+ W

∂u

∂ζ

)
− v =

1
2

(
E

∂2u

∂y2
+

∂2u

∂ζ2
+ 2ε

∂2u

∂ζ∂Z

)
ε

(
v
∂v

∂y
+ W

∂v

∂ζ

)
+ u = −∂p

∂y
+

1
2

(
E

∂2v

∂y2
+

∂2v

∂ζ2
+ 2ε

∂2v

∂ζ∂Z

)
εE

(
v
∂W

∂y
+ W

∂W

∂ζ

)
= −∂p

∂ζ
− ε

∂p

∂Z
+

E

2

(
E

∂2W

∂y2
+

∂2W

∂ζ2
+ 2ε

∂2W

∂ζ∂Z

)
.
∂v

∂y
+

∂W

∂ζ
+ ε

∂W

∂Z
= 0

We now expand every variable in powers of ε, for example

u = u0 + εu1 + . . .

p = p0 + εp1 + . . .
... .

To lowest order, the problem we find is the linear problem we have already solved. If we repeat the
solution procedure from the first section of this lecture, we find

u0 = U(y)−A(y, Z)e−ζ cos ζ + B(y, Z)e−ζ sin ζ (19)
v0 = A(y, Z)e−ζ sin ζ + B(y, Z)e−ζ cos ζ. (20)

Note that we now allow our coefficients A and B to vary with Z. Mathematically, this is a
consequence of treating Z and ζ as independent variables. Physically, this is possible because
changes with Z are so slow on the ζ scale that the coefficients still act as though they were constant.
From the no–slip condition, we have the conditions on the coefficients that A(Z = 0) = U and
B(Z = 0) = 0. Again as in the first section, we can use the convergence of u0 and v0 to calculate
the induced vertical velocity

W0 = C(Z) +
1
2

∂A

∂y
e−ζ(cos ζ + sin ζ) +

1
2

∂B

∂y
e−ζ(cos ζ − sin ζ).

C(Z) is a constant of integration. To find C(Z), we must consider the far–field flow that the vertical
velocity matches to. By vorticity conservation, ∂w

∂z = 0 to order ε in the interior from equation
(18), so w = constant. This means that C(Z) = C(0) = −1

2
∂U
∂y in order that the vertical velocity

at the bottom of the interior flow matches that at the top of the boundary layer. This gives

W0 =
1
2

∂U

∂y
+

1
2

∂A

∂y
e−ζ (cos ζ + sin ζ) +

1
2

∂B

∂y
e−ζ (cos ζ − sin ζ) .
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However, to find A and B we must move on to the next higher order problem. As before, we can
express it most compactly using complex notation

∂2Λ1

∂ζ2
− 2iΛ1 = Ru + iRv. (21)

where Λ1 = u1 + iv1, and Ru and Rv are the nonlinear terms from the governing equations

Ru ≡ 2
(

v0
∂u0

∂y
+ W0

∂u0

∂ζ

)
− 2

∂2u0

∂ζ∂Z

Rv ≡ 2
(

v0
∂v0

∂y
+ W0

∂v0

∂ζ

)
− 2

∂2v0

∂ζ∂Z
.

We can see that some of the terms of Ru and Rv have the same form as the homogeneous solution
of the left–hand side of equation (21), proportional to e−(1+i)ζ . This is a kind of resonance between
the homogeneous solutions and the forcing functions. Forcing functions like these are called secular
terms, and they give rise to terms of the form ζe−(1+i)ζ in these solutions. They will grow linearly,
and eventually lead to u1 and v1 to become the same size as u0 and v0, when εζ = Z is O(1). At
this point, our expansion in powers of ε would be invalid. Therefore, we must eliminate these terms
by setting their coefficients to zero.
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Boundary Layers

Lecture 2 by Basile Gallet

continued from lecture 1
This leads to a differential equation in Z

∂
∂Z (A− iB) + (A− iB)[−C + Uy

2i(1+i) ] = 0 with C = −Uy

2 .

The solution to this equation with the boundary conditions A(0) = U and B(0) = 0 is

A(Z) = Ue−UyZ/4cos(UyZ/4) (1)

B(Z) = −Ue−UyZ/4sin(UyZ/4). (2)

Hence the corrected velocity field is

u0 = U [1− e−ζ(1+εUy/4)cos(ζ(1− εUy/4))] (3)

v0 = U [e−ζ(1+εUy/4)sin(ζ(1− εUy/4))]. (4)

If Uy < 0, ωz is positive, but the boundary layer is bigger than without the nonlinear correction :

sacrebleu! Our guess on the size of the boundary layer δ =
√

2ν
f+ωz

was wrong. The main nonlinear
effect is not that local vorticity should be added to the global rotation. There is a stronger effect
which is that the vorticity in the boundary layer is advected in the z direction by the pumping
velocity w (w > 0 for Uy < 0).

The equation for Λ1 can then be solved to get the first order correction to u and v, and finally
to w using the mass conservation equation

w1 = −E1/2[
1
2
Uy +

7ε

40
(U2

y + UUyy)]. (5)

The effects of the nonlinear terms on the pumping depend on the structure of the function U(y),
e.g. Uyy.
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Boundary Layers: Stratified Fluids

1 Nansen’s problem

1.1 Effect of the wind on the oceanic currents

Omega = f/2

Wind stress
sea surface z=0

z

x
Ocean : z<0

The problem in which the wind is applying a constant stress τ(y) in the x direction to the surface
of the ocean is known as Nansen’s problem. If the ocean is at rest, the velocity vanishes at great
depth. The stress applied by the wind will induce a current in a boundary layer near the surface.
If the Rossby number ε is small and the flow is steady, the Coriolis force will counterbalance the
stress imposed by the wind. Since the velocity is significantly non-zero only inside the boundary
layer, one can get an order of magnitude, U0, of the velocity of the current from the equilibrium of
these two terms

τ ∼ 2ρΩU0δe which gives U0 = 2τ
ρfδe

with f = 2Ω.

The velocities can be rescaled by U0, the horizontal coordinates by L and the altitude by the height
of the boundary layer δe. This leads to the variable ζ = z

LE−1/2. If we consider ε << 1 we can
rewrite the Navier-Stokes equation in terms of these non-dimensional variables

− v = −px + uζζ (6)
u = −py + vζζ (7)
0 = −pζ . (8)

The pressure is independent of z (we included the gravity term in it) and is equal to its value
outside the ocean, which does not depend on x and y. The system of equations reduces to

− v = uζζ (9)
u = vζζ . (10)

This can be written in terms of the complex variable Λ = u + iv and leads to

Λζζ − iΛ = 0. (11)
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This problem is the same as the Ekman layer problem except for the boundary conditions on the
velocity, which are vz = 0 and uz = τ at z = 0 and u = v = 0 at z = − inf. The velocity field that
satisfies these boundary conditions is

u =
τ√
(2)

eζcos(ζ − π

4
) (12)

v =
τ√
(2)

eζsin(ζ − π

4
). (13)

One should note that the velocity at the surface makes a 45o angle on the right of the surface
stress vector (for Ω > 0) : the current induced by the wind does not drive the objects floating in the
ocean exactly in the direction of the wind. They are deviated to the right in the North hemisphere
and to the left in the South hemisphere. The hodograph shows that the velocities are very close
to zero as soon as ζ is under -1. The vertical velocity is rescaled like the altitude and leads to the
new variable W = E−1/2w which can be computed from the mass conservation equation

vy + Wζ = 0 gives W = −1
2τy(1− eζcos(ζ)).

It has a non-zero limit at great depths, so

W (− inf) = −1
2
τy. (14)

For a wind stress of 1dyne/cm2 this is a velocity of 10cm/day. This phenomenon is responsible
for a major part of the ocean circulation.

1.2 Role of non-linearities

We can now try to figure out what the effects of the nonlinear terms are. We consider the situation
in which the velocity in the x direction is not zero in the deep ocean, but has a finite limit ug(y).

If the Rossby number is smaller than one but “not so small”, one may want to calculate the
effect of non-linearities on the solution we found, which requires a new depth scale and a new
variable Z = εζ. The velocity components are developed in powers of ε : u = u0 + εu1, v = v0 + εv1.
As we did in the previous section, the zero order equation gives the solution we have just calculated
but with constants of integration which depend on the variable Z. The first order equation in
the equation of an oscillator with a “forcing” on the right hand side. For the development to
be consistent there must not be any component of this forcing at the resonant frequency of the
oscillator. This condition leads to a differential equation in Z for the integration constants of the
zero order solution. We can solve this equation and get the corrected velocity

u0 = ug +
τ√
(2)

eζ(1−ε(
τy
2

+
ugy
4

))cos(ζ(1− εugy/4)− π

4
) (15)

v0 =
τ√
(2)

eζ(1−ε(
τy
2

+
ugy
4

))sin(ζ(1− εugy/4)− π

4
). (16)

The boundary layer thickness in dimensional form is

δ∗ =

√
2ν

f − 2τ∗y

ρfδ −
u∗gy

2

. (17)
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We see that in this case the boundary layer is thinner if ugy < 0. It’s not ugy which create the
vertical flow but the curl of the stress −τy. The vertical advection is then independent of ugy and
the only effect of the vertical vorticity is to add to the global rotation to make a thinner boundary
layer.

We can also compute the order one correction to the velocity field and the correction to the
vertical flow

W (−∞) = −1
2

∂

∂y
[

τ

1− ε(ugy + τy

4 )
]. (18)

This vertical flow depends on the horizontal velocity gradients in the deep ocean only at the first
order.

One may wonder if a linearization of the nonlinear terms around ue is still possible in the case
ug >> ue. For more information on this subject one can look at Thomas and Rhines (2002).
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Stratified Fluids

In an ocean there are changes in the density of the water due to variations both in the salinity
and the temperature of the water. The presence of density stratification introduces new and very
interesting elements to the boundary layer picture and the control of the interior flow by the
boundary layers. The control of the boundary layer on the interior flow is mediated by vertical
inertial waves. The stratification allows information to propagate horizontally through internal
gravity waves. There will be some kind of competition between the top and bottom boundary
conditions on the one hand, which propagate through inertial waves, and the side walls boundary
conditions, which propagate through internal gravity waves.

2 The cylinder problem

An interesting problem is to study the motion of a stratified fluid inside a rotating cylinder.
The cylinder’s axis is vertical. The height of the cylinder is L and its radius is r0L. We can use
the following scalings:

−→u∗ = U−→u , (19)
−→x∗ = L−→x , (20)
T∗ = ∆Tv(z∗/L) + ∆ThT (x, y, z). (21)

In these equations, the variables with a star are dimensional. ∆Tv and ∆Th are the vertical and
horizontal temperature variations over the size of the cylinder. The density is supposed to be linear
in the temperature variations

ρ∗ = ρ0[1− αT∗]. (22)

We define p as the non-dimensional pressure difference to the hydrostatic pressure
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p∗ = ρ0gα∆Tv(z2
∗/(2L)) + ρ0fULp(x, y, z), with f = 2Ω.

The scaling velocity is given by a thermal wind balance : U = αg∆Th
f . The motion is supposed

to be steady, incompressible and to follow the Boussinesq approximation. The equations are :

• Navier-Stokes ε(−→u .
−→
∇)−→u +

−→
k Λ−→u = −

−→
∇(p) + T

−→
k + E

2∇
2−→u

• Incompressibility
−→
∇ .−→u = 0

• Temperature advection-diffusion ε(−→u .
−→
∇)T + wS = E

2σ∇
2T

These 3 equations involve 4 dimensionless numbers :

• The Rossby number ε = U
fL

• The Ekman number E = 2ν
fL2

• The Prandtl number σ = ν
κ , where κ is the thermal diffusivity of the fluid.

• A characteristic number of the vertical stratification S = αg∆Tv

f2L
= N2

f2 , where N is the oscil-
lation frequency of inertial waves inside the cylinder.

We consider that the ratio ε
S = ∆Th

∆Tv
is small, so that the temperature equation can be linearized.

We can impose different boundary conditions to the flow :

• We assume a no-slip boundary condition. There must also be no flow perpendicular to the
boundary.

• One or more boundaries may be moving in their own plane.

• The cylinder walls may either be insulating or at a fixed given temperature.

We use polar coordinates, with u being the radial velocity, v the azimuthal one, and w the
vertical one. We assume that the Rossby number is small so that the equations of motion are
linear. For an axially symmetric motion we get

− v = −pr +
E

2
[∇2u− u

r2
] (23)

u =
E

2
[∇2v − v

r2
] (24)

0 = −pz + T +
E

2
∇2w (25)

1
r
(ru)r + wz = 0 (26)

wσS =
E

2
∇2T. (27)

18



We see in the last equation that the perturbation due to vertical motion is balanced in the
steady state by diffusion. The interior vertical velocity “tolerated” by the system is wI ∼ E

σS .
However, an Ekman boundary layer induces a vertical pumping which velocity is of order E1/2.
This means that for a low Ekman number the vertical pumping can be much stronger than the
vertical velocity tolerated by the interior. We may wonder how the system is going to respond to
such a perturbation. The Ekman layers are found using z = ζE1/2 and w = WE1/2

− v = −pr +
1
2
uζζ (28)

u =
1
2
vζζ (29)

0 = −pζ + E1/2T +
1
2
EWζζ (30)

(ru)r + rWζ = 0 (31)

σSE1/2W =
1
2
Tζζ . (32)

We see in the last equation that if σS << E−1/2 we can ignore the buoyancy forces in the
Ekman layer. The temperature is the same as in a purely diffusive state. The boundary layer
is so thin that it remains unchanged. One should remember however that this is true only for a
horizontal bottom boundary.

We can adapt the previous results for the Ekman layer to polar coordinates and get the com-
patibility condition between the boundary layer flow and the flow in the interior of the cylinder
(variables with a subscript I)∫ +∞

0 u(ζ)dζ = vI
2 and wI(r, 0) = E1/2W (r, +∞)

.

An integration with respect to ζ of the mass conservation equation leads to

wI(r, 0) = E1/2W (r, +∞) =
E1/2

2r
(rvI)r. (33)

If the upper boundary is rotating with differential speed vT (r), the same analysis yields

wI(r, 1) =
E1/2

2r

∂

∂r
(r(vT − vI(r, 1))). (34)

In the limit E << 1 the equations governing the interior flow are

vI = pIr (35)
TI = −pIz (36)

uI =
E

2
[∇2v − v

r2
] (37)

1
r
(ruI)r + wIz = 0 (38)

wI =
E

2σS
∇2TI . (39)
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uI is of order E, which means that if σS << 1 then wI >> uI , so that the mass conservation
equation becomes ∂

∂zwI = 0. The interior vertical velocity is independent of z and may be written
as the mean of its values at z = 0 and z = 1

wI =
1
2
(wI(r, 1) + wI(r, 0)) =

E1/2

4r

∂

∂r
[r(vT − (vI(r, 1)− vI(r, 0)))]. (40)

If we differentiate the azimuthal component of the Navier-Stokes equation in the interior with z
and its vertical part with r we get the thermal wind equation

∂

∂z
vI =

∂

∂r
TI . (41)

This equation can be integrated with respect to z

vI(r, 1)− vI(r, 0) =
∂

∂r

∫ 1

0
TI(r, z′)dz′. (42)

The vertical velocity of the interior can then be written in terms of the temperature and of the
forcing velocity

wI =
E1/2

4r

∂

∂r
(rvT )− E1/2

4r

∂

∂r
(r

∂

∂r
(
∫ 1

0
TI(r, z′)dz′)). (43)
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Boundary Layers: Stratified Fluids

Lecture 3 by Jeroen Hazewinkel

continued from lecture 2
Using wI = E/(2σS)∇2TI , the interior of the cylinder is be described by

E

2σS
∇2TI +

E1/2

4
∇2

∫ 1

0
TI(r, z′)dz′ =

E1/2

4
1
r
(rvT )r. (1)

This result can be rewritten as a Poisson equation

∇2Θ = λ
1
r
(rvT )r, (2)

where we introduced the new temperature

Θ = TI + λ

∫ 1

0
TIdz

′, (3)

with

λ =
σS

2E1/2
. (4)

This λ will be the determining parameter to the problem. Remember that, although being small,
the term σS in λ is as yet undefined relatively to E1/2. When λ is relatively small stratification
is of little importance and the problem reduces to the unstratified Ekman problem. In the other
limit, i.e. λ� 1, stratification suppresses most of the vertical motion.

In order to solve the Poisson equation 3 we need boundary conditions at all sides of the domain.
At the top and bottom of the cylinder, we simply have to match the interior temperature with
the forced exterior temperature. At the side walls we have to find solutions for Θ(r → r0). As we
anticipate side wall boundary layers, we introduce a boundary layer correction to all variables, e.g.
u = uI(r) + ubl(ζ) → ubl = 0, ζ → ∞. As before we will use a boundary layer coordinate ζ. Note
that the boundary layer scale has to be determined as yet, i.e. r = δζ with δ unknown. In order
to find this scale we turn back to the same balance equations that hold in the interior. However,
the full Laplacian is replaced by its first approximation in the rapidly changing coordinate ζ, i.e.
∇ → ∂ζζ . This gives
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v = pζ , (5)

u =
E

2
vζζ , (6)

0 = pz + T +
E

2
wζζ , (7)

uζ + wz = 0, (8)

σSw =
E

2
Tζζ . (9)

Combination of the above equations results in wz = −E/2p4ζ and Tz = −σSpζζ . Taking the
z-derivative of 7 and using the above found relations gives one equation for pressure p,

E2

4
p6ζ + σSpζζ + pzz = 0. (10)

Recall that we assume all derivatives to z are O(1) and those to ζ are O(1/δ). This means that for
example the first term of 10 is O(E2/δ6).

There are several balances that satisfy 10. We will examine the options. Firstly, there could be
a balance between the first term and the last term. This implies that E2/δ6 = O(1),− > δ = E1/3,
the so called Stewardson layer. This layer exists for a homogeneous, rotating fluid. In order for the
second term of 10 to be negligible we also find that σS � E2/3.

Considering σS � E2/3 there are two possible balances. For δ = E1/2/(σS)1/4 the first and
second term balance. This boundary layer only depends on the stratification and is therefore called
the buoyancy layer. For δ = (σS)1/2 we find a balance between the second and third term of 10.
This layer is the hydrostatic layer. As both boundary and hydrostatic layers are found in the limit
σS � E2/3 they coexist. In the larger hydrostatic layer, close to the side wall the buoyancy layer
is found. With decreasing stratification these two combine in the Stewardson layer. In both limits,
σS small and large compared to E2/3, the full sixth order of 10 is preserved. As we considered
the cylinder with a stratification we will have to see the impact of both hydrostatic and buoyancy
layers on the interior, or how they set the boundary condition for 3.

0.1 Hydrostatic boundary layer

Turning to the hydrostatic layer we introduce a stretched coordinate

η =
r0 − r

δhydrostatic
=

r0 − r
(σS)1/2

. (11)

We rewrite the azimuthal velocity as v = ṽ(r, η). This indicates, from the governing equations,
that u = E/(σS)ũ and p = (σS)1/2. The governing equations, accurate to terms of order larger
than E2/3, become
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ṽ = p̃η,

ũ =
1
2
ṽηη, (12)

T̃ = p̃z, (13)
ũη + w̃z = 0, (14)

w̃ =
1
2
T̃ηη. (15)

Friction is in this layer not of importance, as we balanced the second and third term in 10. Com-
bining all terms we find an equation for v. These can be combined to give, (with the assumption)
that v vanishes at r = r0

ṽηη + ṽzz = 0. (16)

To solve this we notice that the thickness of the hydrostatic layer, in the case of σS � E, is much
greater than that of the Ekman layer at the top and bottom. This means that for these Ekman
layers the dynamics of the hydrostatic layer is part of the interior. The vertical velocity shows that

wh =
E

(σ)3/2
w̃ =

E

(σ)3/2
T̃ηη =

E

(σ)3/2
ṽzη. (17)

From the Ekman transport we find that this vertical velocity is

E

2
ṽhr =

E1/2

(σ)1/2
ṽη, (18)

indicating that ṽzη = σS/E1/2vη or ṽz = λṽ at top and bottom of the hydrostatic layer. Compli-
mentary to this we will assume that ṽ = V (z)e−aη, so that 16 results in

(λ2 + a2)ṽ = 0. (19)

This shows that the hydrostatic boundary layer has a characteristic scale of a = (2σS)1/2/E1/4.

0.2 Buoyancy layer

In the very thin buoyancy layer we found the thickness to be δb = E1/2/(σS)1/4. Introducing the
boundary layer coordinate ξ = (r− r0)/δb and v = v̂ etc., we rewrite the governing equations again
to find

v̂ = p̂ξ, (20)

û =
1
2
v̂ξξ, (21)

T̂ =
1
2
ŵξξ, (22)

ûξ + ŵz = 0, (23)

ŵ =
1
2
T̂ξξ. (24)
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Note that, as we derived the buoyancy layer being the balance between buoyancy and the friction
we also see this in the third equation above. We see that combining the equations implies that

T̂4ξ + 4T̂ = 0, (25)

indicating an Ekman like boundary layer. Using the Ekman solution we find

T̂ = Ae−ξ cos ξ +Be−ξ sin ξ. (26)

As ψ̂ = T̂ξ we find that

ψ̂ =
r0
2

[−Ae−ξ(cosξ + sinξ) +Be−ξ(cosξ + sinξ)]. (27)

Now we have expressions for both hydrostatic and buoyancy layers. The sum of the solutions has
to meet the outer boundary conditions.

0.3 Matching at r = r0

At the outer rim, r = r0, there is no slip which means that

vI(r0, z) + ṽ(0, z) +
E

(σS)3/2
v̂(0, z) = 0. (28)

The last term on the lhs is negligible so we find that interior velocity is balanced by the velocity
from the hydrostatic layer. Taking the z-derivative and using the thermal wind relation, ??, leads
to

(TI)r − T̃η = 0. (29)

In case of an insulating side wall at r = r0 the radial derivative of total temperature should be zero,
i.e. (TI)r − T̃η − Tξ = 0. Combining these two results we see that Tξ = 0. Also the total stream
function should be zero. Combining previously found expressions for ψ we find

0 = ψI +
E

(σS)
ψ̂ +

E

σS
ψ̃ = ψI −

Er0
2σS

T̂η −
Er0
2σS

T̂ξ. (30)

Noting that we found an expression for T̃ (r0)η and T̂ (r0)ξ = 0, we see that

ψI =
Er0
2σS

(TI)r. (31)

By definition ψr = rw and we recall the interior balance between vertical flux and temperature and
forcing velocity. We recast this at position r = r0 so that we can use 31, and find

E1/2

4
r0vT −

E1/2

4
r0

∫ 1

0
∂rTIdz −

r0E

2σS
r0

∫ 1

0
∂rTIdz = 0. (32)

Assuming that there is no z dependence for the interior temperature, the integrals give us the
integrants so we have

∂rTI =
λ

1 + λ
vT (r0). (33)
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Figure 1: Observations by Pedlosky et al. (1997) in a rotating cylinder with a temperature profile
on top. Shown are three different experiments in which the azimuthal velocity is visualized by dye.
Note that the profiles changes for different stratification. On the right their comparison between
observations (+) and theoretical predicted profile (line)

The z independence of T also means that Θ(r0)r ≡ Tr(r0)+λ
∫ 1
0 Tr(r0)dz = (1+λ)Tr(r0) = λvT (r0).

This means that we finally found the boundary condition for 3 being

Θr(r0) = λvt(r0). (34)

1 Two experiments

We will briefly discuss two experiments that can be seen as confirmation of the above theory for
a rotating, stratified fluid. In their experiment ? considered a cylinder, having a temperature on
top in the varying in the radial direction and bottom at a fixed temperature. The boundary on top
did not rotate differentially from the rotation of the whole tank. In this special set-up it turns out
that on the side walls both hydrostatic and buoyancy layers are inactive but a layer of the scale
(σS)1/2 exists in the vicinity of the upper boundary. For sufficiently large stratification, the Ekman
pumping into the interior is completely suppressed. The nearly inviscid interior velocity field has
to match the no-slip in a layer that decreases with decreasing stratification. Beneath this layer, a
smooth transition of the azimuthal velocity towards null at the bottom is found. In a comparison
between theory and experiments the velocity profiles were found to be in good agreement, as shown
in Figure 1.

In a second study Whitehead and Pedlosky (2000), again a stratified fluid in a rotating cylinder
was considered. However, in this case not the top, but a coil around the cylinder heated the fluid.
The heating was placed in the middle of the height of the cylinder. This sidewall warming forces
a vertical mass flux in the sidewall boundary layer. The divergence of this flux effects the interior
flow and drives a azimuthal velocity. Again, the theoretical predictions and observations were in
close agreement. In Figure 2 both theory and experimental velocity profiles at several radii are
shown. As the stratification increased, Whitehead and Pedlosky (2000) observed that the velocity
profile got a sharper peak.
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Figure 2: Comparison between a) theoretical prediction for the velocity profiles and b) the ob-
servations. The various lines and dots correspond to different sampling radii. in Whitehead and
Pedlosky (2000).
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Observational evidence for the Ekman layer

lecture by Steve Lentz

Lecture 4 by Miranda Holmes

This lecture focuses on observations that test the Ekman dynamics developed so far and to
come.

Eddy viscosity Recalling that the size of the Ekman layer is δE =
√

2ν/f and using typical
values of ν = 10−6m2/s, f = 10−4s−1 gives δE = 10cm. However, in the ocean δE is on the order
of 10m, suggesting that we should use a much higher viscosity coefficient of νocean = 10−2m2/s.
This can be achieved by a suitable parameterization of an eddy viscosity.

We define a turbulent eddy-viscosity coefficient A such that

Auz ≈ −〈u′w′〉 .

Unlike the molecular viscosity ν, A depends on the flow and the stratification.
Madsen (Madsen (1977)) found that a suitable form for A in a turbulent Ekman layer is

A = κu∗z , u∗ =
√

τ s/ρ0 , (1)

where z is the distance from the boundary, τ s is the applied stress, and κ = 0.4 is Von Karman’s
constant. This form can also be derived through dimensional arguments. If we define u∗ =

√
τ s/ρ0,

then the stress at the surface is τ s/ρ0 = A∂u
∂z . From dimensional analysis, we have that ∂u

∂z ∝ u∗/z.
Letting the constant of proportionality be 1/κ gives (1).

This is the parameterization most often used to test Ekman theory. It can be used to derive
the frequently-cited Law of the Wall. Integrating ∂u

∂z = 1
κ

u∗
z gives the Law of the Wall:√

u2 + v2 =
u∗
κ

ln(z)− u∗
κ

ln(z0) , u∗ = τ b/ρ0 (2)

Reminder Ekman Dynamics Recall that in a steady wind-driven flow with no horizontal
variations in the flow field or density field, the Ekman transport is∫ 0

−∞
(v − vg)dz = 0

∫ 0

−∞
(u − ug)dz =

τ s
y

ρ0f
,

where τ s
y is the y-component of the surface stress. (The x-component is assumed to be 0.) (Note

that the roles of u and v have been interchanged from the previous lectures.) This depth-integrated
result is independent of the vertical viscosity, provided there is a depth where the internal stress is
small compared to the surface stress. This feature allows us to test the Ekman transport predictions
even though we don’t have a full understanding of the details of the mixing processes.
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Testing the Theory To test the theory, we need the following:

1. Velocity profiles (u(z), v(z)) to sufficient accuracy and vertical resolution.

2. Surface stress τ s. This is typically found from a bulk formula using wind velocity measure-
ments.

3. Geostrophic velocity, or a way to determine where τ = 0, to separate the boundary layer from
the interior flow.

4. Filtering out of high frequency (1/f) velocity variability, since we usually neglect accelerations
in the calculation of the Ekman transport.

Observational Tests of the Ekman Transport Relationship The following two studies have
been important in verifying the Ekman transport relationship:

• Price, Weller, Schudlich, Science 1987

• Chereskin, JGR 1995

Both took measurements for about 160 days, and integrated down to a boundary layer thickness
of about 50m. The plots of measured average transport, compared to theoretical Ekman transport,
show excellent agreement (see figures 1, 2).

Figure 1: Observed and simulated Ekman spiral (A,B). Measured transport versus theoretical
transport (C). (Price and Schudlich (1987))

They also showed the qualitative characteristics of the Ekman spiral, with the mean velocity
turning to the right (in the northern hemisphere) and decreasing as depth increases. (Figures 1,
2).

Observations of the Ekman spiral under ice Hunkins (K.Hunkins (1966)) dropped a drogue
under ice and measured the drag on it. The drag was used in a force balance to infer the velocity.
From this, he obtained a picture of an Ekman spiral below the ice (Figure 3).
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Figure 2: (Chereskin (1995))

Surface Mixed Layer Lentz (Lentz (1992)) measured the depth of the mixed layer and compared
it to the wind stress and the depth of the wind-driven flow. He found there was a good correlation
between the wind stress and the depth of the mixed layer. The depth of the wind-driven flow also
depended on the wind stress, but tended to exceed the mixed-layer depth.

Summary of surface Ekman layer There is convincing evidence of wind-driven transport with
the right magnitude and direction, which extends beyond the mixed layer. Note that it is only the
mean profiles that veer clockwise - the profiles at any instant of time show large fluctuations on
storm timescales (1 day) and diurnal timescales. Present research is focused on (a) the character
of turbulent mixing in the boundary layer; and (b) the role of surface waves in determining the
vertical structure of the flow - these have the additional complication of introducing a non-rigid
boundary and wave momentum transfer.

Bottom boundary layer Ekman theory is essentially the same if the bottom is flat, or if the
flow is unstratified and the slope is small. However, for stratified flow over a sloping bottom, a
buoyancy force comes into play that may dominate the dynamics. Here we give a brief, qualitative
description of this buoyancy force - it will be described with more rigor in the next lecture.

Suppose we have a stably stratified flow along a bottom of slope α. Stress on the bottom results
in vertical mixing and up- or down-slope Ekman transport (figure 4 left). This flow displaces the
isopycnals, and a buoyancy force develops that may oppose the interior pressure gradient (figure
4 center). This buoyancy force reduces v in the bottom boundary layer through the thermal wind
balance, −fvz = gρb

x/ρo, so the stress on the bottom is reduced. As the boundary layer continues
to grow, v decreases at the bottom (figure 4 right). Eventually a steady-state is reached where
the bottom stress, and hence the Ekman transport, are both zero, so the isopycnals are displaced
no further. At the bottom, the pressure gradient of the interior flow is balanced by the buoyancy
force in the boundary layer. The end result is geostrophic flow that just happens to be zero at the

30



Figure 3: (K.Hunkins (1966))

bottom.
If the flow is out of the page and the slope is as in Figure 5, then the Ekman transport is

initially down the slope. This advects light fluid under heavy, creating convective instabilities,
which enhance mixing, so we expect a thicker boundary layer. If the flow is into the page, then the
Ekman transport is initially upslope, advecting heavy fluid under lighter, so we expect a thinner
boundary layer because this configuration is convectively stable.

Observations of the bottom boundary layer There are relatively few observational studies
of the bottom boundary layer. References (Weatherly and Martin (1978)), (Trowbridge and Lentz
(1991)), (MacCready and Rhines (1991)), (MacCready and Rhines (1993)), (Garrett and Rhines
(1993)) are some of the main ones. Here we summarize results from a small number of studies.

Lentz and Trowbridge (Lentz and Trowbridge (1991)) tested the hypothesis that the thickness
of the boundary layer across a sloping bottom should depend on the direction of the flow, using data
taken from the Northern California shelf. Because of the turbulence created by the strong shear
near the sea floor, the bottom boundary layer tends to be well-mixed, with nearly homogeneous
temperature and density profiles. This allowed them to characterize the height of the bottom
boundary layer as the place where the temperature deviated from the temperature at the sea floor
by more than a given amount. In their experiment, they characterized the height of the boundary
layer as the place where |T −Tb| < 0.05◦C. They found a good correlation between the direction of
the flow and the thickness of the boundary layer. Figure 6 (left) shows that the estimated boundary
layer height is larger when the flow is downwelling, and smaller when the flow is upwelling. Figure

31



Figure 4: A bottom that is sloping with respect to the isopycnals introduces a buoyancy force in
the boundary layer that may be important to the dynamics.

Figure 5: Downslope Ekman transport produces a thick boundary layer (left), while upslope Ekman
transport produces a thinner layer (right).

6 (right) plots this correlation.
Moum et al (Moum and Kosro (2004)) looked for convectively driven mixing in the bottom

boundary layer, which should be present if the flow is downwelling. Their measurements showed an
unstable density gradient near the bottom, typical of convection. The slope was in good agreement
with the Law of the Wall scaling (equation (2)).

Many previous observational studies have noted a qualitative ‘Ekman-like’ veering of the velocity
field near the bottom. However, this needs to be looked at more quantitatively. Two questions
of interest are: (1) Does the Ekman balance hold? (2) If not, are the cross-isobath buoyancy
forces significant in the cross-isobath momentum balance? The bottom boundary layer momentum
balance has been tested in two observational studies.

(Trowbridge and Lentz (1998)) looked at 2 years of data off the Northern California shelf. They
measured the transport with current meters, and estimated the stress using the Law of the Wall
(2). The buoyancy force was estimated from temperature measurements. As in other studies, the
boundary layer was defined to be the place where |T − Tb| < 0.05.

Because they had the appropriate data, they included acceleration terms in their calculations
of the terms in the momentum balances. The equations they used are
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Figure 6: Left: The thickness of the bottom boundary layer (the bottom mixed-layer height) is
greater when the along-shelf current is positive, inducing a downwelling Ekman flux, than when it
is negative, with an induced upwelling flux. Right: Bottom mixed-layer height versus along-shelf
current. (Lentz and Trowbridge (1991))

ρ0

∫ δ

0

[
∂u

∂t
−

(
∂u

∂t

)
δ

]
dz − ρ0f

∫ δ

0
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Ekman transport
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δ2

2
∂T
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2
∂T

∂y︸ ︷︷ ︸
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If they neglected the buoyancy term, they found a poor agreement between the wind stress
and Ekman transport (Figure 7 top), particularly during large boundary layer transport events. If
the buoyancy force was included, the agreement was better (Figure 7 middle), showing that the
buoyancy term is as large as the bottom stress, particularly during downwelling when the bottom
mixed layer is thick.

(Perlin and Klymak (2005)) looked at the momentum balance in transects of the Oregon shelf.
They measured the cross-shelf bottom boundary layer velocity ub and compared it to the Ekman
velocity estimated from Ekman balance: uEK = τby

ρ0fδE . Although they neglected the buoyancy
force, they found a good agreement between these velocities in the moored observations (Figure 8)

These two studies show that the current observational evidence supporting either Ekman bal-
ance, or the importance of the buoyancy force in the bottom boundary layer, is very limited.
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Figure 7: Wind stress (dotted) and Ekman transport (solid), neglecting the buoyancy term (top)
and including the buoyancy term (middle) (Trowbridge and Lentz (1998))
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Figure 8: (Perlin and Klymak (2005))
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Boundary Layers: Sloping bottoms in a stratified, rotating fluid

Lecture 5 by Iva Kavčič

In oceanic coastal regions, e.g. on the shelf regions between the coast and the deep ocean, the
bottom generally slopes and the fluid is stratified.
We have already seen the way the thermal boundary layers on vertical walls can control the interior
flow and how the Ekman layers on horizontal boundaries can do the same for rotating fluids. Sloping
boundaries are a type of a hybrid of these two.

1 The model

We begin with the schematic of the bottom boundary layer (hereafter: BL), shown in Fig. 1. Fluid

Figure 1: A schematic of the bottom BL, upwelling case

is stratified with the density gradient ∂ρ/∂z′. Here z′ denotes the direction of the true vertical (Fig.
2), aligned with the direction of gravity, g, and planetary rotation, Ω. The bottom is in direction y
of the slant coordinate frame (y, z), rotated counterclockwise with the angle θ with respect to the
reference coordinate frame (y′, z′), (Fig. 2). The density gradient, ∂ρ/∂z′, produces the buoyancy

Figure 2: The reference, (y′, z′), and the slant coordinate frame, (y, z)
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force in the true vertical, with the frequency, (Fig. 1),

N2 = −g

ρ

∂ρ

∂z′
. (1)

As in the linear Ekman layer problem, the flux is to the left (from high to low pressure) of the along
isobar flow component U (Fig. 1). Here this results in canceling of the density gradient component
perpendicular to the bottom (∂ρ/∂z) due to the upslope transport of the heavier fluid by the cross
isobar flow component V , and formation of the mixed BL (Fig. 1). The density gradient component
along the slope (∂ρ/∂y) can be derived as

4ρ

4z′
=

4ρ

4y sin θ
, (2)

g
∂ρ

∂y
= −ρN2 sin θ. (3)

From (3) we see that fluid moving up the slope a distance 4y = 4z′/ sin θ, (Fig. 3), will produce
a density anomaly

4ρ = −1
g
N2ρ0 sin θ4y. (4)

Figure 3: The distances in reference and slant coordinate frame

From (3) and the thermal wind relation

f
∂U

∂z
=

g

ρ

∂ρ

∂y
, (5)

we see that over a depth of the bottom BL of the order

H = − fU

N2 sin θ
(6)

it would be possible to adjust the speed of the current to zero without Ekman layers and their
dissipation, i.e. currents could flow long distances without decay. Here f is the Coriolis parameter,
f = 2Ωcos θ ≈ 2Ω, for θ small.
Following MacCready and Rhines, MacCready and Rhines (1993), we write the equations in the
slant coordinate frame (Fig. 2):

v = v′ cos θ + w′ sin θ (7)
w = −v′ sin θ + w′ cos θ (8)
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Far from the lower boundary the temperature is:

T∞ = 4Tvz
′/D, (9)

with 4Tv being the mean temperature difference in the true vertical, z′ (Fig. 2). The buoyancy
frequency now can be defined as:

N =
(

gα4Tv

D

)1/2

. (10)

The temperature equation is then:

T = 4Tvz
′/D + ϑ (y, z) (11)

= 4Tv (z cos θ + y sin θ) /D + ϑ (y, z) , (12)

where the ϑ (y, z) is the temperature perturbation. We assume that ϑ→ 0 as z →∞.

2 The steady-state solution

As in the case of stratified fluid, we investigate the steady-state behavior of the flow in the BL and
interior. Here we simplify the problem by searching for the solutions independent of y, i.e. only
functions of z. As z → ∞, u → U , and a constant v is independent of y. The above, together
with the assumption of incompressibility, gives w ≡ 0. Furthermore, nonlinear terms in equations
vanish identically.
The governing equations of motions then are:

2Ω cos θu = − 1
ρ0

∂p̃

∂y
+ Avzz + b sin θ, (13)

−2Ω cos θv = Auzz, (14)

2Ω sin θu = − 1
ρ0

∂p̃

∂z
+ b cos θ, (15)

vN2 sin θ = κbzz. (16)

Here A is the momentum mixing coefficient, κ is the thermal diffusivity and p̃ (y, z) is the pressure
perturbation. Buoyancy perturbation, b, is given by

b = αgϑ, (17)

where α is the coefficient of thermal expansion, and Coriolis parameter is f = 2Ωcos θ.
The boundary conditions (hereafter: BC) at the lower boundary (z = 0) are:

u (z = 0) = 0, (18)
v (z = 0) = 0, (19)

bz (z = 0) = −N2 cos θ. (20)

Here (20) represents the insulating BC at z = 0.
Since u, v and b are independent of y, derivation of (15) with respect to y gives:

∂2p̃/∂y∂z = 0. (21)
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Then, from (13) and (14) we derive the boundary layer equation:

−f2

A
v = Avzzzz + bzz sin θ. (22)

If the fluid were homogeneous (∂ρ/∂z′ = 0) or if the bottom were flat (θ = 0) we would recover the
Ekman layer problem. Using the thermal equation (16) to eliminate b in favor of v yields:

vzzzz + 4q4v = 0, (23)

q4 =
1
4

[
f2

A2
+

N2

Aκ
sin2 θ

]
. (24)

The general form of the solution of (23) is v ∼ exp(rz), which gives

r1,...,4 = ± (1± i) q. (25)

Since it is not physical for the solutions to grow exponentially in space, we keep the ones with
Re (r) < 0. Their linear combination is also the solution of (23):

v = C exp (−qz) cos (qz) + B exp (−qz) sin (qz) (26)

From (24) we can see that if the bottom is flat (θ = 0) the BL scale is the Ekman layer thickness.
If the bottom is vertical, i.e. if θ = π/2, the scale is the buoyancy layer thickness. Applying the
BC (19) gives C = 0. Then, from the thermal equation (16) follows

bz = −B
N2 sin θ

2qκ
exp (−qz) (cos (qz) + sin (qz)) , (27)

and from (14)

u = − f

2Aq2
B exp (qz) cos (qz) + U∞. (28)

The insulating BC, (20), gives B = 2qκ cot θ, while the non slip condition on u, (18), yields

U∞ = − f

Aq
κ cot θ, (29)

giving the solution for u
u = U∞ [1− exp (−qz) cos (qz)] . (30)

Therefore, we see that the flow at infinity is not arbitrary - it is the part of the solution. Moreover,
equation (29) gives the two limiting cases for u on horizontal (for θ = 0, U∞ → ∞) and vertical
(U∞ = 0 for θ = π/2) bottom.
Similarly to the linear Ekman problem, only the frictionally driven flow up the slope (v component)
contributes to the total flux (stream function)

Ψ (z) =
∫ z

0
vdz = κ cot θ {1− exp (qz) [cos (qz) + sin (qz)]} . (31)

The total, as z →∞, is:

Ψ (∞) = κ cot θ =
Aq

f
U∞. (32)
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This also follows directly from the integral of the thermal equation (16), together with the insulating
BC (20).
Now, we see that the boundary layer controls the interior through the dependence of the U∞ on
the thermal diffusion and the slope (29). This result, while at first glance non intuitive, is really
just a manifestation of the control mechanisms we have already met in our discussion of the linear
flow in the cylinder, although here in a more extreme form.
Unlike in the linear Ekman layer case, now we are not any more able to drive the system as we
would like and establish some arbitrary equilibrium velocity along the isobaths. We continue our
presentation by investigating the possibility of initially specifying a different far field along shore
flow, and monitor its evolution in time. Further reference can be found in the work of MacCready,
Rhines and Garrett, Garrett and Rhines (1993).

3 The slow diffusion equation

We now derive the ”slow diffusion equation” (hereafter: SDE) from the time-dependant system of
driving equations (13)-(16):

∂v

∂t
+ 2Ω cos θu = − 1

ρ0

∂p̃

∂y
+ Avzz + b sin θ, (33)

∂u

∂t
− 2Ω cos θv = Auzz, (34)

2Ω sin θu = − 1
ρ0

∂p̃

∂z
+ b cos θ, (35)

∂b

∂t
+ vN2 sin θ = κbzz. (36)

As in the case of Ekman layer in a stratified fluid, we apply the scaling: y = Ly′, z = Dz′, t = D2

κ t′,
where L, D and D2/κ are the characteristic length, depth ant time scales, respectively, and y′, z′ and
t′ are the non-dimensional variables. The velocity components are scaled with (u, v) = U (u′, v′),
pressure is scaled with respect to the geostrophic balance, p̃ = ρ0fULp̃′, and buoyancy with b =
fUL
D b′.

After defining the BL thickness as δ = D/L and dropping the primes, the dimensional system
(33)-(36) can be written in the non-dimensional form:

E

2σ

∂v

∂t
+ u = −∂p̃

∂y
+

E

2
vzz + b

sin θ

δ
, (37)

E

2σ

∂u

∂t
− v =

E

2
uzz, (38)

−δ tan θu = −∂p̃

∂z
+ b cos θ, (39)

E

2σ

∂b

∂t
+

sin θ

δ
Sv =

E

2σ
bzz, (40)

where f = 2Ωcos θ is the Coriolis parameter, E = 2A
fD2 is the Ekman number, and S = N2δ2

f2 is the
stability parameter.
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In the interior (as in the case of stratified fluid before) it is reasonable to neglect friction and to
assume stationarity. Also, tan θ is small. Therefore, the system (37)-(40) reduces to:

uI = −∂pI

∂y
+ bI

sin θ

δ
, (41)

bI cos θ =
∂pI

∂z
. (42)

Eliminating v between (38) and (40) yields:

1
σ

∂

∂t

[
uI +

δ

S sin θ
bI

]
=

1
2

∂2

∂z2

[
uI +

δ

σS sin θ
bI

]
. (43)

Eliminating the pressure in (41) and (42) and noting that b is independent of y gives:

∂uI

∂t
=

∂bI

∂z

[
sin θ

δ

]
, (44)

and the SDE is then:
∂

∂t

(
∂uI

∂z

)
= σ

1 + δ2

σS sin2 θ

1 + δ2

S sin2 θ

∂2

∂z2

(
∂uI

∂z

)
. (45)

We introduce the modified stability parameter, S∗, as:

S∗ ≡ S
sin2 θ

δ2
=

N2

f2
sin2θ. (46)

The effective diffusion coefficient then becomes:

µdiff = σ

(
1
σ + S∗

1 + S∗

)
, (47)

in the non-dimensional form, whereas its dimensional form is given with:

(µdiff )dimensional = A

(
1
σ + S∗

1 + S∗

)
. (48)

From both (47) and (48) we can see that if σ > 1, the diffusion coefficient would be smaller than
in the absence of stratification.
Now, if u is independent of z and t as z →∞, we obtain the final form of the SDE:

∂uI

∂t
= mudiff

∂2uI

∂z2
. (49)

To obtain the BC for SDE we need to consider the BL at sloping bottom, i.e. find BC such as to
match the boundary.
We introduce the BL coordinate:

ζ = zE−1/2, lim
z→0

ζ = 0. (50)
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Then (labeling correction variables with ”e”) the BL equations for correction functions are:

ue = −∂pe

∂y
+

1
2
vzζζ + be

sin θ

δ
, (51)

−ve =
1
2
ueζζ , (52)

−δ tan θue = − 1
E1/2

∂pe

∂ζ
+ be cos θ, (53)

sin θ

δ
ve =

1
2σS

beζζ . (54)

These are the same steady equations, (13)-(16), and BC, (18)-(20) we dealt with before, yielding
the equation for ve:

∂4ve

∂ζ4
+ 4q4

eve = 0, (55)

q4
e =

[
1 + σS

sin2 θ

δ2

]
. (56)

Like for the steady-state case, the BL solution is then:

ve = C exp (−qeζ) cos (qeζ) + B exp (−qeζ) sin (qeζ) (57)

be = σS
sin θ

δ
{exp (−qeζ) [(C −B) sin (qeζ)− (C + B) cos (qeζ)]} (58)

ue =
1
q2
e

[C exp (−qeζ) sin (qeζ)−B exp (−qeζ) cos (qeζ)] (59)

(60)

Matching conditons between BL and the interior:

uI + ue = 0 (61)
vI + ve = 0 (62)

Here: vI ∼ O (E)→ B = 0, and

∂bI

∂z
+ E−1/2 ∂be

∂ζ
= −S

ε
cos θ → A = 0, (63)

where ε = U
fL .

The frictional BL vanishes to the lowest order. Also, uI must satisfy the no-slip BC at z = 0, giving
us the solution for uI :

uI = U∞
2√
π

∫ ζ/
√

µdiff t

0
exp

(
−ϕ2

)
dϕ (64)

Next order BL solution still has Ve = 0⇒ A = 0.
BL contribution to buoyancy flux yields:

B = − δα

2σS sin θ

[
S

ε
cos θ +

δU∞

sin θ
√

πµdiff t

]
(65)
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The long time solution in BL is obtained as t→∞:

be = −E1/2 S

εα
cos θ exp (−αζ) cos (αζ) , (66)

which is the steady state solution (in non-dimensional form) already attained.
Hence it is possible to consider arbitrary interior flows but, at least with the simple physics here,
the boundary layer control eventually expunges the along isobath flow and yields an asymptotically
weak frictional boundary layer. This, in one sense resolves the conundrum posed by the steady
boundary layer solution in which the interior flow and the cross-shelf flow depended only on the
stratification and the vertical thermal diffusion coefficient. Nevertheless, the solution presented
here eventually approaches that very constrained solution.
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Stress Driven Flow with a Sloping Bottom

Lecture 6 by Frédéric Laliberté

In the preceding chapter, we investigated an isolated Ekman boundary layer for a sloping bottom
in a stratified, rotating fluid. In this chapter, we intend to reconnect both the surface, stress driven
boundary layer with a gently sloping bottom boundary layer.

1 Upwelling

The most physically stable case is without doubt the one leading to upwelling, a displacement
that does not lead to a local inversion in the stratification. Indeed, if a volume of fluid is pushed
upward along a sloping bottom, the only result in a hydrostatic point of view is a local increase in
stratification, which negatively feedbacks on the ability of this volume to continue to move upward.
So, one can easily argue that such a water movement must be relatively slow and strongly stratified
near the bottom boundary. A flow with both of these qualities, one can argue, can only have (and
will probably have) limited turbulence. Assuming that it is the case, one can thus start with the
hypothesis that the flow will be laminar and smooth everywhere, including close to the boundary.
This is a very desirable simplification that makes the upwelling case more physically tractable and
intuitive, a path we will pursue first.

Oceanographically speaking, the problem we want to model is the upwelling on the continental
shelf due an along shore wind stress resulting in a surface mass divergence. However, for our
treatment to remain valid we must be sufficiently far from the shore so that we do not have
to worry about our laminar bottom boundary layer merging with the surface Ekman layer. The
schematic of the problem can be found in fig. 1. In this figure, the surface boundary layer transport
results in a Coriolis force balancing the along shore wind stress τ . Again, we will be working in
a rotated coordinate system so that the bottom slope corresponds to z = 0, i.e. the z axis is not
parallel to the gradient of the geopotential (the gravitational force) but is instead perpendicular to
the bottom.

1.1 Boussinesq equations

In order to study this problem without being systematically confusing which coordinate system is
used, we will carefully restate the dimensional incompressible Boussinesq equations. If we use the
usual cartesian coordinates with the z-coordinate parallel to the gravity, we have (for a reference
see, for example, Vallis (2006)):
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Richer Physics

Stress driven flow

!

!/"f#

$

z

            y

N2

Off shore Ekman flux in upper Ekman layer
Figure 1: Idealized upwelling schematics on a sloping shelf away from shore. Notice the rotated
coordinates

∂t~u
′ + ~u′ · ∇′~u′ + fk̂′ × ~u′ = − 1

ρ0
∇′p + bk̂′ +∇′ · (A′∇~u′), (1)

∇′ · ~u′ = 0, (2)

∂tb + ~u′ · (∇′b + N2k̂′) = ∇′ · (κ′∇′b). (3)

where b = −gρ̃/ρ0 and N2 = −g∂z′ ρ̄/ρ0, with ρ = ρ0 + ρ̄′(z′) + ρ̃′(x′, t).

1.2 Approximation for the sloping bottom

In the previous equations we have allowed the eddy viscosity A′ and the eddy diffusivity, κ′ to be
anisotropic.

The next step is to apply these three approximations:

1. The flow is stationary, all the time derivatives vanish.

2. We linearize the flow about ~u′ = 0.

3. We rotate the axis in order to have the y axis parallel to the bottom slope, assuming the
slope is extremely gentle. We will clarify later what it means for a slope to be small.

The resulting system of equations is

fn̂× ~u = − 1
ρ0
∇p + bn̂ +∇ · (Ã∇~u), (4)

∇ · ~u = 0, (5)

~u · (∇b + N2n̂) = ∇ · (κ̃∇b). (6)
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where all the quantities are now considered in the tilted frame and n̂ = Rk̂′, A = RA′RT and
κ = Rκ′RT . These are simply the rotated values for the anisotropy vectors/tensors.

R =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 , n̂ =

 0
sin θ
cos θ

 . (7)

The anisotropic mixing coefficients will be assumed to be diagonal in the flow interior:

A′ =

Ah 0 0
0 Ah 0
0 0 Av

 , κ′ =

κh 0 0
0 κh 0
0 0 κv

 . (8)

To obtain these tensors in the tilted frame we just have to apply the transformation, yielding:

A = A′ + (Av −Ah) sin θO, κ = κ′ + (κv − κh) sin θO. (9)

where the matrix O is given by:

O =

0 0 0
0 sin θ cos θ
0 cos θ − sin θ

 (10)

We will further assume that the motion is mostly independent of the x-x′ coordinates so that
we can neglect all the x derivatives.

The final set of equations reduces to

−fv cos θ + fw sin θ = ∇ · (A∇u), (11)

fu cos θ = − 1
ρ0

∂yp + b sin θ +∇ · (A∇v), (12)

−fu sin θ = − 1
ρ0

∂zp + b cos θ +∇ · (A∇w), (13)

∂yv + ∂zw = 0, (14)

v(N2 sin θ + ∂yb) + w(N2 cos θ + ∂zb) = ∇ · (κ∇b). (15)

in the tilted frame.

1.3 Top boundary layer

In the gravitational frame, there will be a top boundary layer with pumping vertical velocity given
by:

w′ = w′
e = − 1

ρ0f
∂y′τ (16)

48



1.4 The interior solution

Vertical velocity Using the zonal momentum equation in the gravitational frame and non-
dimensionalizing it with vertical scale D (of the ocean depth order), horizontal scale L, vertical
velocity scale W and horizontal velocity scale U , we obtain,

−v′I =
Av

fD2
(∂2

z′u′I +
Ah

Av

(
D

L

)2

∂2
y′u′I). (17)

For geophysical flows, the aspect ratio D
L � 1 and we can expect, generally, that Av > Ah

(intensified mixing in the vertical, a result of the possibility of isopycnals overturning). Labeling
E := Av

fD2 , we see that v′I is O(E).
With this result, we get from the continuity equation that ∂z′w′ must be of O(E D

L
U
W ), implying

that w′
I ≡ w′

e.

Buoyancy In order to find a suitable expression for the interior buoyancy, we can find a solution
such that b is independent of z′. Neglecting v′I comparatively to w′

I , we obtain the following equation
for b:

κh∂2
y′bI = w′

IN
2 (18)

= − 1
ρ0f

∂y′τ. (19)

Assuming the wind stress disappears far from the shelf region, we obtain

∂y′bI = − 1
ρ0f

N2

κh
τ. (20)

Zonal velocity Using the thermal wind balance, f∂z′u′I = −∂y′bI , we get

u′I =
N2

κh

τ

ρ0f2
z′ + u′I0(y

′). (21)

Bottom buoyancy diffusive flux The flux perpendicular to the bottom boundary can be writ-
ten as

Fz = −k̂ · (κ∇b) = −k̂ · (κ̃∇′b). (22)

What we want to do is to recast the insulated boundary condition, bz′ = −N2 cos θ as a boundary
condition on the perpendicular flux, Fz. This yields,

(Fz)ins = (κv cos2 θ − κh sin2 θ)N2 ≈ κv cos θN2. (23)

to O(θ2), where we have assumed that κv � κh cot2(θ). This is the condition of smallness required
for θ.

Next, we want to find the contribution to the perpendicular flux by the interior solution:

(Fz)I = − τ

ρ0f
sin θN2. (24)

The boundary condition should be

(Fz)tot = (Fz)ins. (25)

which can only be satisfied, in general, with the boundary layer contribution.
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1.5 Bottom boundary layer

As seen previously, when we had only a bottom layer, we can reduce the problem to

∂4
zvb +

4
l4

vb = 0, (26)

where l−4 = f2

4A2
v

[
1 + N2 sin2 θ

f2κv/Av

]
.

Thus,

vb = e−
z
l [A cos(

z

l
) + B sin(

z

l
], (27)

ub =
f

Av

l2

2
e−

z
l [A sin(

z

l
)−B cos(

z

l
], (28)

∂zbb = −N2

2κv
δ sin θe−

z
l [A(cos(

z

l
)− sin(

z

l
)) + B(cos(

z

l
) + sin(

z

l
))], (29)

wb =
l

2
e−

z
l [∂yA(cos(

z

l
)− sin(

z

l
)) + ∂yB(cos(

z

l
) + sin(

z

l
)) + sin(

z

l
))]. (30)

1.6 Matching Solutions

In order to determine the integration constants, we need the interior solutions plus the boundary
corrections to add up and satisfy the no-slip boundary condition. The interior fields at the bottom
boundary yields

uI = u′0(y
′) = u′0, (31)

vI = sin θw′
I = − sin θ

1
ρ0f

∂y′τ ′, (32)

wI = cos θw′
I = − cos θ

1
ρ0f

∂y′τ ′, (33)

Fz = N2(κv cos θ +
τ ′

ρ0f
sin θ). (34)

It remains to match the solutions in order to satisfy the no-slip boundary condition:

utot = 0, u0(y)− f

Av

l2

2
B = 0, (35)

vtot = 0, − 1
ρ0f

∂yτ sin θ + A = 0, (36)

wtot = 0, − 1
ρ0f

∂yτ +
l

2
(A + B) = 0, (37)

(Fz)tot = (Fz)ins, κv cos θN2 + N2 τ

ρ0f
sin θ −N2 l

2
sin θ(A + B) = 0. (38)

Using the last equation we can recover

l

2
(A + B) =

τ

ρ0f
+ κv cot θ, (39)
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the boundary layer mass flux.
The first term on the RHS corresponds to the surface offshore flux balancing the onshore bottom

Ekman flux. The second term is the transport in bottom boundary layer induced by stratification
and diffusion as in the previous solution.

Using the remaining equations, we obtain

A =
1

ρ0f
∂yτ sin θ, (40)

B = −A +
2
l
(

τ

ρ0f
+ κv cot θ), (41)

u0 = − f

Av

l2

2
B. (42)

From now on, we will assume that fl2

2Av
= O(1).

The controlled interior along shore velocity is

uI =
fl2

2Av

(
τ

ρ0f

([
2N2Av

κhf2l2

]
z +

2
l

)
− 1

ρ0f
∂yτ sin θ + 2κv cot θ

)
(43)

Of the three terms independent of z, the second one, the one of O(1
l ), must be the dominant

of these terms since l is a small length scale. Therefore, we have a good idea of how the boundary
control affects the interior flow by comparing this term with the first term, the one dependent on
z. Assuming z is of order D in the interior, we obtain the ratio:

r1/2 ≈
N2

f2

f

κh
Dl (44)

=
N2D2

f2L2

fL2

Ah(κhAh)
l

D
(45)

=
σhS

Eh
E

1
2
v =

[
σhS

E
1/2
v

] (
Ev

Eh

)
. (46)

If Ev/Eh = O(1) then if σhS � E
1/2
v , the interior velocity is only marginally controlled by the

boundary layer and, hence, it must nearly satisfy the no slip boundary condition on z = 0 without
the boundary layer.

The reader might remember that this has also been observed in the cylinder problem with
strong stratification.

2 Turbulent bottom boundary layer

In figure 2 we show the schematics for an upwelling bottom boundary layer. During the process,
denser water is brought up, under lighter water, hence enhancing the static stability. The situation
for downwelling is fundamentally different in that it reduces the hydrostatic stability by forcing
lighter fluid under a heavier fluid. This leads to local overturning and convective instability. We
thus expect the presence of a thicker turbulent boundary layer as in the upwelling case. The
schematics for the problem, usually referred to as the Chapman-LentzChapman and Lentz (1997)
(CL) model, are shown in figure 3. In this figure, we have illustrated the physics of the boundary
layer, where one expect the fluid to be well-mixed, with isopycnals normal to the bottom boundary.
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The turbulent bottom boundary layer

!

!/"f#

$

z

            y

N2
In this previous example we arrange
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(upwelling).

This enhances the static stability and a laminar model is at least

plausible.The situation is different in downwelling
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Figure 2: Idealized upwelling schematics on a sloping shelf away from shore. Notice the rotated
coordinates Chapman Lentz Model

Light water driven under denser water. Expect convective

mixing and a thick turbulent boundary layer. See Trowbridge

and Lentz (1991) and Chapman and Lentz (1997).

The Chapman Lentz (CS ) model:boundary layer is well

mixed and isopycnals are vertical

z=-h(y)

!

"

u

y

z

x

Off shore frictional flow

Figure 3: Schematics for the Chapman Lentz model for turbulent boundary layer
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2.1 Model Equations

In this section, we return to the usual coordinates with unprimed variables corresponding to the
frame where the z axis is parallel to the gravitational force. The model considers an hydrostatic
flow and it neglects momentum advection. The equations read:

−fv = − 1
ρ0

∂xp +
1
ρ0

∂zτ
x (47)

fu = − 1
ρ0

∂yp− gρ (48)

0 = −∂zp− gρ (49)
∂xu + ∂yv + ∂zw = 0 (50)

u∂xρ + v∂yρ + w∂zρ = ∂y (κh∂yρ) + ∂z (κv∂zρ) . (51)

where ρ is the perturbation density and B is the vertical turbulent density flux.
The interior flow is considered vertically uniform, therefore, all the partial derivatives in z vanish.

All the turbulent effects including mixing, are assumed to be taking place in the bottom boundary
layer that lies between z = −h(y) and z = −h(y) + δ(x, y). Here, δ represent the boundary layer
depth.

In the boundary layer, the mixing is assumed so intense that the fluid is vertically well-mixed,
making the isopycnals perpendicular to the boundary. The boundary layer is also considered to
be of sufficient extent that the intra boundary layer shears are not affected by the bottom friction.
Instead, it is assumed that the horizontal variation in the density field are solely responsible for
such shears.

2.1.1 Primary results

In their paper, Chapman & Lentz use slightly different equations and use them to derive a relation
between p and δ, the thickness of the layer, where p decays like a one-dimensional diffusion equation,
with x acting as time. This particular analysis is relevant for the problem of a coastal current,
which definitely requires all three dimensions.

The current is thought to be narrow at the start and spread laterally due to friction, with the
boundary layer thickening as the current flows downstream. One of the results of their model is that
the boundary layer thickness evolves until the thermal winds brings u to zero, thus eliminating the
bottom stresses. A schematic of this result is shown in figure 4. In figure 5, one will find one solution
as computed by CL. It shows both the solution for a fixed stratification and for no stratification.
The two leads to qualitatively very different results.

2.1.2 Further simplifications

Unlike in the previously mentioned reference, in order to carry tractable analysis further, we must
make more simplifications. First, we assume that the forcing is independent of x, the along-shore
coordinate. As a consequence, the boundary layer must transport mass offshore and the whole flow
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Results of CL problem (1)

 

The boundary layer

evolves until finally the

thermal wind brings u

to zero and eliminates

the bottom stress. The

scaling for the bl

thickness is, as before,

H =
fU

N
2
sin!

Figure 4: Schematic depicting the adjustment and evolution of a narrow inflow starting at x = 0.
(a) Plan view of the current boundaries that initially spread, owing to bottom friction, at a rate set
by r

fhy
, (b) Evolution of the interior velocity ui and bottom velocity ub with downstream distance.

(c) Along-isobath velocity profiles at various stages downstream The bottom boundary layer grows,
while the interior and bottom velocities both decrease, eventually reaching an equilibrium where
the bottom velocity vanishes.

must be two-dimensional, resulting in the equations:

fu = − 1
ρ0

∂yp, (52)

−fv =
1
ρ0

∂zτ, (53)

ρ

ρ0
g = − 1

ρ0
∂zp, (54)

∂yv + ∂zw = 0, (55)
v∂yρ + w∂zρ = ∂y (κh∂yρ) + ∂z (κv∂zρ) . (56)

2.1.3 Interior Flow

As before, the interior is to first order affected by the wind stress, τw, which produces an Ekman
pumping

w = we = − 1
ρ0f

∂yτ
w. (57)

The bottom is assumed to lie at z = −h(y) = −αy + δ. with α a specified constant. At this
boundary, we demand that the buoyancy flux normal to the bottom vanishes and all perturbations
resulting from the boundary layer go to zero for large y. Moreover, we require that the density be
continuous at the bottom since it is being mixed by the local turbulence.
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Results of CL problem (2)

 

Dashed curves for

N=0.

Note the stratified

current flows

without further

decay after ub goes

to zero.

Want a model to discuss

this equilibrium state that

does not require a 3-d

numerical calculation

Figure 5: Maximum values of (upper) bottom boundary layer thickness, (middle) interior along-
isobath velocity, and (lower) bottom velocity at each downstream (x) location. Dashed curves
correspond to an unstratified flow.
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Below the surface Ekman layer and above the bottom boundary layer, the turbulent stress in
the fluid interior is zero, thus the interior velocity, vI , must vanish as it is not affected by either of
the boundary layers. This, as previously in this work, implies wI = we(y) = − 1

ρ0f ∂yτ
w.

Interior density equation With the results of the previous section, the density equation greatly
simplifies in the interior:

we∂zρI = ∂y (κhI
∂yρI) + ∂z (κvI ∂zρI) . (58)

The vertical density gradient is assumed to be constant, g
ρ0

∂zρI = −N2, which constrains the
density to be

ρI

ρ0
= −z

N2

g
−

∫ ∞

y

τw

ρ0f

N2

gκhI

dy′ + 1 (59)

where we have chosen ρ0 to be the surface density away from all perturbations.

Interior along shore velocity Using the thermal wind equation, we can recover the along shore
interior velocity

∂zuI =
g

fρ0
∂yρI =

τw

ρ0f2

N2

κhI

, (60)

which yields

uI =
z

κhI

N2

f2

τw

ρ0
− 1

ρ0f
∂yps (61)

where ps, the barotropic pressure, is an unknown function.

2.1.4 Inside the bottom boundary layer

The model time scale is so large that the hydrostatically unstable region are assumed to overturn
instantaneously, which is equivalent to assume a very intense mixing. This implies that ρb(y) =
ρI(y, z = −h(y) + δ(y)), i.e. the density in the boundary layer is independent of z and continuous
with ρI at the separation interface, so density obeys.

ρb

ρ0
= (h− δ)

N2

g
−

∫ ∞

y

τw

ρ0f

N2

fκhI

dy′ + 1. (62)

Pressure must be hydrostatic and continuous with the interior:

pb

ρ0
= −(h− δ)[z +

h− δ

2
]N2 + z

∫ ∞

y

τw

ρ0f

N2

fκhI

dy′ − gz +
ps

ρ0
. (63)

Using the geostrophic balance for u, we can recover ub,

ub =
N2

f
∂y((h− δ)[z +

h− δ

2
]) + z

τw

ρ0f

N2

fκhI

+
1

ρ0f
∂yps. (64)
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2.1.5 Finding the barotropic pressure

One unknown quantity that is left to be determined is the barotropic pressure ps, used to define
the along-shore velocities. In order to prescribe it, we use an Ekman bottom drag parameterization
of the form

vbδ =
rub(−h)

f
(65)

which enables us to write

− 1
ρ0f

∂yps =
N2

f
δ∂y(h− δ) + h

τw

ρ0f2κhI

+
τw

ρ0r
. (66)

in terms δ(y), a still undetermined quantity.

Boundary Layers velocities Having the barotropic pressure ps, we can find the along-shore
velocities,

ub =
N2

f
(z + h)

[
∂y(h− δ) +

τw

ρ0fκhI

]
+

τw

ρ0r
, (67)

uI =
N2

f
(z + h)

[
τw

ρ0fκhI

]
+

N2

f
δ∂y(h− δ) +

τw

ρ0r
(68)

We observe that they are continuous at z = −h+δ. We also observe that in the absence of stress
the bottom velocity in the bottom boundary layer is zero as in MacCready and Rhines MacCready
and Rhines (1993)

2.2 Budgets

In this section, we want to derive precise budgets for the different quantities of importance. In fig.
6 we show what the bottom boundary layer should look like.

Mass budget for boundary layer

It is obvious that the off shore mass flux must balance the on

shore Ekman flux. But it is illuminating to examine the

detailed budget in preparation for the buoyancy budget.

n

zt=-h+!

z= -h
y

y+"y

A

ds

Figure 6: Schematics for the bottom boundary layer
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2.2.1 Mass budget

In this problem, the Ekman flux from along-shore winds induce a shoreward mass flux that must
be balanced by the bottom boundary transport. In order to make this intuitive idea more rigorous,
we consider the vertical integral of the continuity equation, over the depth of the bottom boundary
layer: ∫ −h+δ

−h
∂yvbdz = 0. (69)

where the part corresponding to the internal flow vanishes since the interior onshore velocity van-
ishes, vI = 0.

If one integrates by parts,

0 = ∂y

∫ −h+δ

−h
vbdz + [wb(−h + δ)− vb(−h + δ)∂y(−h + δ)] + [wb(−h)− vb(−h)∂y(−h)], (70)

= ∂y(vbδ) + w∗, (71)

where the first bracket corresponds to the flux across the boundary layer surface and the second
bracket corresponds to the flux through the sea floor, a term that must vanish.

Since vI = 0 and the problem has no x-dependence, the continuity equation implies that w∗ =
we. This mean that the mass budget is fully determined,

∂y(vbδ)−
1

ρ0f
∂yτ

w = 0, (72)

⇒ vbδ =
τw

ρ0f
. (73)

as expected.

2.2.2 Buoyancy budget

In this section we want to use the buoyancy equation, eq. 56,

v∂yρ + w∂zρ = ∂y (κh∂yρ) + ∂z (κv∂zρ) . (74)

First, we integrate it, making the vertical transport term disappear, leaving us with

vbδ∂yρbdy = Tb · n̂ds + ∂y(κhb
δ∂yρb)dy, (75)

where the first term on the rhs corresponds to the diffusive mass flux at the upper boundary of the
bottom boundary layer. We have also used the fact that ρb is independent of z (the bottom layer
is well-mixed).

Using a pill-box argument, one can show that the diffusive flux Tb must be continuous and,
hence, it must be equal to the interior diffusive flux at the top of the bottom boundary layer
Tb = TI .

Thus, one can write

Tb · n̂
ds

dy
= TI · n̂

ds

dy
= κvI ∂zρI − κhI

∂yρI∂y(−h + δ). (76)

Using the expressions for ρI and ρb in eq. 59 and in eq. 62, one can write an equation for δ:

∂y

[
κhb

δ∂y(h− δ) + κhb
δ

τw

ρ0fκhI

]
= κvI +

1
κhI

(
τw

ρ0f

)2

(77)
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2.2.3 Investigation of a special case

In this section, we want to investigate the solutions for a special case of bottom bathymetry and
wind stress. As before, we use h = −αy and impose a stress of the form τw = τ0e

−a(y/L).
The equation for δ becomes

d

dy

[
δ
dδ

dy
− (1 + Fe−ay)δ

]
= −Σv − F 2Σhe−2ay (78)

where F = τ0
αρ0fκhI

, Σv = κvI
κhb

α2 and Σh =
κhI
κhb

.
If one integrate this equation once,

δ∂yδ − (1 + Fe−ay)δ = −Σv(y − y0)−
F 2

2a
[e−2ay − e−2ay0 ]Σh + C (79)

where y0 is the starting point of integration (we cannot deal with the singularity linked with the
apex) and C is a constant of integration.

C =
{

δ

[
dδ

dy
− (1 + Fe−ay0)

]}
y=y0

=
{

δ

[
− g

αN2ρ0
∂yρb

]}
y=y0

< 0 (80)

using the definition of ρb.

When δ goes to zero Knowing the internal velocity, given by eq. 68,

uI =
N2

f
(z + h)

[
τw

ρ0fκhI

]
+

N2

f
δ∂y(h− δ) +

τw

ρ0f
(81)

we can observe that the ratio of the last term to the first term is

N2H2

f2L2

fL2

κhI

r

Hf
≈ σS

Eh
E

1
2
v =

σS

E
1
2
v

Ev

Eh
. (82)

So, as in the rotating cylinder case, when σS

E
1
2
v

>> 1, the interior velocity nearly satisfy the

boundary condition.

2.2.4 Results

The results for this special case are shown in figure 7 and 8.
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Results

 
The boundary layer thickness with respect to the

sloping bottom for a =1, !v = 0.1 , !H= 0.05. A

starting value of "  of half the depth at y = yo = 0.01

is chosen and C is -0.0025.  F =1 has been used.

Figure 7: The boundary layer thickness with respect to the sloping bottom for a = 1, Σv = 0.1,
Σh = 0.05. A starting value of δ of the depth at y = y0 = 0.01 is chosen and C is −0.0025. F = 1
has been used.
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Results (2)

For larger diffusion coefficients in the interior

 

!
V

!
H

=0.2

= 0.1

! goes to zero well

beyond the region

of wind stress.

The interior velocity

then satisfies the

zero velocity

condition
Figure 8: For larger coefficients in the interior, Σv = 0.2, Σh = 0.1, δ goes to zero well beyond the
region of wind stress. The interior velocity then satisfies the zero velocity condition.
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Boundary Layers: Homogeneous Ocean Circulation

Lecture 7 by Angel Ruiz-Angulo

The first explanation for the western intensification of the wind-driven ocean circulation was
provided by Henry Stommel (1948). The following chapter considers that work and subsequent
developments in the context of boundary layer theory.

1 The homogeneous model

Midlatitude ocean circulation can be approached by using boundary layer theory. We begin by
idealizing the ocean basin as a box with irregular bottom and filled up with homogeneous water.
At the top of the box, the ocean surface, the wind flows only on the zonal direction, x, but varies
on the meridional direction, y. This imposed wind stress results in the surface Ekman layer, which
drives subsurface ocean waters via vertical Ekman pumping. Figure 1 shows the idealized ocean
basin for this model.

The homogeneous model

H

hb

!

f/2

"

z

y

x

!= constant

Figure 1: Proposed model for wind driven flows, allowing the bottom to have some variations on
the topography

The Ekman pumping results in a vertical velocity, we, which is proportional to the curl of the
wind stress (See lecture 1)

wtop = we = k̂ · ∇ ×
(
~τ

ρf

)
, at z = H + hb (1)
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The contribution from the bottom Ekman pumping is given by

wbottom =
δ

2
ζ + ~u · ∇hb =

δ

2
[vx − uy] + uhbx + vhby, at z = hb (2)

In addition to the component due to the interior relative vorticity, ζ, the magnitude of wbottom is
affected by the interaction of the velocity with the topography. Note that the first term on the
RHS corresponds to the classical flat bottom solution.

Assume that the interior (the fluid away from the bottom and top Ekman layers) is a homo-
geneous geostrophic flow over a non-uniform bottom. We now introduce the beta approximation.
On a spherical planet, the Coriolis parameter is f = 2Ωsinθ . By expanding around a reference
latitude, θ0, and keeping the first order term we find the parameters for a Cartesian framework
called β−plane:

f = 2 Ω sinθ0︸ ︷︷ ︸
reference Coriolis parameter

+
2 Ω cosθ0

R︸ ︷︷ ︸
β parameter

y + .... (3)

Thus,
f = f0 + β0y

In general, β is expressed as:

β =
∂f

∂y
=

2Ωcosθ
R

We assume β0 y << f0, which is called he β−plane approximation. Physically we are working on
a cartesian plane tangent to the sphere at the reference latitude θ0.

1.1 Equations of motion

By taking the curl of the N-S equations we can writhe the governing equations for the model in
terms of vorticity (

∂

∂t
+ u

∂

∂x
+ v

∂

∂y

)
ζ + βv = f

∂w

∂z
+A

(
∂2

∂x2
+

∂2

∂y2

)
ζ (4)

If u and v are independent of z (thermal wind and constant density) then w must be a linear
combination of z. The upper and lower limits of the vertical velocity are given by the top Ekman
layer (Eq. 1) and the bottom Ekman layer (Eq. 2), therefore:

∂w

∂z
=
wtop − wbottom

H

Applying this approximation and integrating vertically Eq. 4 then becomes(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y

)
ζ + βv +

f0~u

H
=
f0we

H
− f0δ

2H
ζ +A

(
∂2

∂x2
+

∂2

∂y2

)
ζ (5)

Since the interior remains in geostrophic balance horizontally we can introduce the geostrophic
stream function:

ψ =
p

ρf0
where u = −∂ψ

∂y
and v =

∂ψ

∂x
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The global variables are scaled with:
Velocity: U
Length: L
Potential, ψ: UL
Time: (β0L)−1

Let us choose U such that it balances the input of vorticity by the wind with the advection of
planetary vorticity

U =
τ0

ρH0Lβ0

Similarly, the Ekman pumping scales as,

We =
τ0
ρf0L

Finally, scaling Eq. 5 results in:

∂

∂t
∇2ψ + δ2IJ(ψ,∇2ψ + ψx + ηJ(ψ, hb) = we − δs∇2ψ + δ3m∇4ψ (6)

δI =
(U/β0)1/2

L
, η =

f0∆hb

H0β0L
, δs =

f0δ

2H0βL
, δm =

(A/β)1/3

L

Where, δI is the inertial scale , η is the relative strength of the bottom topography to β−effect, δs
is the Stommel boundary layer scale and δm corresponds to the Munk’s boundary layer scale.

2 The singular perturbation problem

Assume that all the boundary layers are small compared to the length of the basin, L, i.e. δi/L <<
1, δs/L << 1 and δm/L << 1. Considering that the bottom is flat in the interior and ignoring
the inertial and friction terms, the governing equation is:

ψx = we(x, y) (7)

This is the Sverdrup relation. The solution to this equation cannot satisfy no-normal flow at both
boundaries.There are two solutions based on the boundary conditions, either ψ(x = 0) = 0 at the
western boundary or ψ(x = xe) = 0 at the eastern boundary, where x = xe corresponds to the
eastern boundary. Hence, the two possible interior solutions are:

1) Satisfying ψ(x = 0) = 0, no normal flow on the western boundary:

ψ =
∫ x

0
we(x′, y)dx′ (8)

Using a similar wind stress distribution as Stommel Stommel (1948), the solution to Eq. 8 in
the basin is shown in Figure 2. The solutions are:

ψ1 = −xsin(πy), u1 = −∂ψ1

∂y
= xπcos(πy) and v1 = −sin(πy)
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Figure 2: Streamlines and the velocity field inside the basin model corresponding to the solution
of the Eq. 8.

2) The other potential solution is no normal flow on the eastern boundary, ψ(x = xe) = 0.

ψ = −
∫ xe

x
we(x′, y)dx′ (9)

Using the same wind stress as before, the following geostrophic potential satisfies the boundary
conditions for Eq. 9. The corresponding solution in the basin model domain is shown in Figure
3.

ψ2 = (xe − x)sin(πy), u2 = −∂ψ1

∂y
= −(xe − x)πcos(πy) and v2 = −sin(πy)

2.1 An Integral constraint

By taking a steady and closed streamline from the interior of the basin and integrating over the
closed contour, C, the Eq. 6 results in

∮
C

∂~u

∂t
· d~s+

�������������:0∮
C
~u

[
δ2I ζ + y + ηhb

]
· n̂ds =

∮
C
~τ · d~s− δs

∮
C
~u · d~s+ δ3m

∮
C
∇ζ · n̂ds (10)

The left hand side of the Eq. 10 is equal to zero for a steady closed streamline, the temporal term
vanishes and since there is no flux across any steady closed streamline, the second term vanishes
as well, therefore

0 =
∮

C
~τ · d~s− δs

∮
C
~u · d~s+ δ3m

∮
C
∇ζ · n̂ds (11)

From Eq. 11 it is possible to observe that the circulation (net input of vorticity) on each
streamline should be balanced by either diffusion in the interior or friction at the bottom. The
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Figure 3: Streamlines and velocity field inside the basin model corresponding to the solution of the
Eq. 9, i.e., ψ(x = xe) = 0.

Munk layer δm includes, in principle, the unresolved eddies within AH . The explicit flux from
eddies, if known, is included in the flux vorticity integral by an additional flux term, i.e.

0 =
∮

C
~τ · d~s− δs

∮
C
~u · d~s+ δ3m

∮
C
∇ζ · n̂ds− δ2I

∮
C
~u′ζ ′ · n̂ds (12)

Since the basin model is itself a streamline, this last term should be zero for the streamline
coincident with the boundary (no normal flow through the boundaries).

2.2 The Energy constraint

Intuitively, by looking at wind stress distribution shown in Figure 4, the natural (comfortable)
solution to the Sverdrup expression, Eq. 7, corresponds to the one that satisfies no flow at the
eastern boundary, Eq. 9. Additionally, this solution compares well with the observations. In order
to prove the validity of this intuitive choice we look at the energetics of the fluid flow for a steady
circulation in a rectangular ocean basin on the β−plane. The system of equations needed to solve
the energetics is governed by the simplified vorticity equation (Eq. 4) and the following boundary
conditions for the given domain D. It is

ψ

∣∣∣∣
∂D

= 0, and ∇ψ
∣∣∣∣
∂D

= 0 if δm 6= 0

where,
D = [0 ≤ x ≤ xe] × [0 ≤ y ≤ 1].

The energy equation is obtained by multiplying Equation 4 by ψ, integrating over the whole basin,
D, and applying the boundary conditions. Finally, the result is:

〈we ψ〉 = −δs 〈|∇ψ|2〉 − δ3m 〈|∇2ψ|2〉 (13)
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where,

〈 f 〉 ≡
∫ ∫

D
f dxdy

The equilibrium has been reached, the forcing term, 〈weψ〉 is balanced by the dissipation terms.
The condition to satisfy this balance is that we and ψ must be negatively correlated, and this favors
the circulation of Figure 3

3 The linear boundary layer problem

We now explore another simplification of the governing equation (Eq. 6) where the amplitudes of
the relative motion are small, i.e.

δI << δs and δI << δm.

The resulting equation is a the linear boundary layer problem:

ψx = we − δs∇2ψ + δ3m∇4ψ (14)

The proposed interior solution for this problem is ψI .

ψI(x, y) = −
∫ xe

x
we(x′, y)dx′ + Ψ(y). (15)

Note that the limits of integration make no distinction between the eastern and western boundaries,
so no intensification is expected in the interior (temporary ignorance!!).

3.1 The Stommel Model

For the interior of the linear boundary layer we need to manipulate Equation 14. By assuming
small variations in the flow along the boundary layer and large variations across the boundary layer
flow, we can now keep only the x derivatives. Furthermore, scaling by x = δξ results in δwe << 1,
which can be neglected. We now integrate once over η so that

φ︸︷︷︸
a

= −
(
δs
δ

)
∂φ

∂ξ︸ ︷︷ ︸
b

+
(
δ3m
δ3

)
∂3φ

∂ξ3︸ ︷︷ ︸
c

. (16)

Assuming that δs >> δm and δ ∼ δs allows us to ignore the term c. Since this is the highest-order
derivative in the equation this becomes a singular perturbation problem. Stommel’s model for the
boundary layer problem is recovered (Stommel (1948)).

∂φ

∂ξ
+ φ = 0. (17)

It has the following solution,
φ = A(y)e−ξ.

No normal flow condition is necessary at one of the boundaries; as before, we can apply this
condition on either the eastern boundary or the western boundary. For the western boundary,
x = 0,

A = −ψI(0, y).
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Let us define a new boundary layer coordinate, ξ′, for the eastern boundary

ξ′ =
(xe − x)

δs
then,

∂φ

∂ξ′
− φ = 0.

Then, our new boundary layer equation is:

∂φ

∂ξ′
− φ = 0.

The corresponding solution is:
φ = A(y)eξ

′
.

This solution has exponential growth of the BL on the eastern boundary, which is physically not
possible since the BL should be finite and should be absorbed smoothly by the interior. Therefore,
we keep the first solution, which actually corresponds to the western intensification (our temporary
ignorance has been removed!). Looking at the general solution for the interior, Ψ(y) = 0 on the
boundary. Finally, combining our equations for the linear BL (Eqns. 14 and 15) with the valid
solution results in

ψ(x, y) = ψI(x, y)− ψI(0, y)e−(x/δs)

with,

ψI(x, y) = −
∫ xe

x
we(x′, y)dx′.
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Figure 4: Streamlines corresponding to wind driven circulation in the ocean basin based on Stom-
mel’s model. The dimensions of the basin is L (west to east) by b (south to north), the size
of the boundary layer respect to the basin length is δs/L = 0.05. Henry Stommel proposed
τ = −Fcos(πy/b) ( Stommel (1948) )
.

The western intensification represented in Figure 4 is controlled by the boundary layer and the
β−effect.
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So far, Stommel’s model neglects the no slip condition on the western boundary. Figure 5
shows the meridional velocity v. Note that the velocity is northward close to the boundary layer
and then turns southward as Sverdrup flow for most of the ocean basin extent.
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Figure 5: Meridional velocity in the middle of the basin as predicted by Stommel’s model (nor-
malized by we(y = b/2)). Note that the only boundary condition satisfied is zero flow through the
western boundary, i.e., v(x = 0) 6= 0. As before δs/L = 0.05

3.2 The no slip condition and the sublayer

Stommel’s model assumption that δm/δ ∼ 0 leaves no room to satisfy a no slip condition, as a
natural consequence the vorticity balance of the whole basin depends on the lateral diffusion term.

In order to satisfy the no slip boundary condition, we now rewrite the Equation 16 with a
slightly different scaling, x = δsξ.

φ︸︷︷︸
a

= − ∂φ

∂ξ︸︷︷︸
b

+
(
δ3m
δ3s

)
∂3φ

∂ξ3︸ ︷︷ ︸
c

. (18)

It is necessary now to keep both of the terms; b and c that we are adding to Stommel’s model as
an additional sublayer. Defining ξ = l η as the sublayer scale and balancing the terms b and c we
find

l =
(
δm
δs

)3/2

.

The thickness of the sublayer inside the Stommel boundary layer is given by,

δsub = δs l =
δ
3/2
m

δ
1/2
s

=
[
A

L2

H0√
2vf

]1/2
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After scaling Eq. 18 and integrating it once over η, we find the correction function for the sublayer:

χηη − χ = 0, where, χ(η) = C(y) e−η.

The solution should be bounded, therefore the term proportional to exp(+η) automatically goes to
zero. Hence, we could rewrite Stommel’s solution with the additional sublayer correction function

ψ(x, y) = ψI(x, y) +A(y)e−(x/δs) + C(y)e−(x/δsub).

Applying the boundary conditions of no slip, ψx(0, y) = 0, and no flow at the western boundary,
ψ(0, y) = 0 allows us to find the function C(y) since A(y) is already known

C = −δsub

δs
A and, A = −ψI(0, y).

Finally, the total solution for the ocean basin including no slip at the western boundary is given
by,

ψ(x, y) = ψI(x, y)− ψI(0, y)
[
e−(x/δs) −

(
δsub

δs

)
e−(x/δsub)

]
. (19)

Figure 6 shows the resulting profile for the meridional velocity. Note that the magnitude of v,
approaches to zero near the western boundary.
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Figure 6: Meridional velocity in the middle of the basin adding no slip condition at the western
boundary, i.e., v(x = 0) = 0. δs/L = 0.05 and δsub = 0.0045
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Boundary Layers: Homogeneous Ocean Circulation

Lecture 8 by Henrik van Lengerich

1 Vorticity Balance

Vorticity is conserved along streamlines and this allows us to extract information from the governing
equations without the use of the solution.

1.1 Balance along x - direction

We perform an integral from x = 0 to x = xe about the vorticity equation (Eq. ??), this is also
known as the dissipation balance. We neglect uy because it is small compared to vx in the boundary
layer and we ignore all inertial and viscous terms in the interior, as well as use the no slip condition
on v at x = 0, to obtain ∫ xe

0
[ψx = we − δs∇2ψ + δ3M∇4ψ]dx. (1)

ψ is conserved so the left hand side of Eq. 1 is zero. The stream function multiplied by the
boundary layer thickness is negligible close to the right hand side. This gives, for we = we(y),

0 = xewe + δsψx(0)− δ3mψxxx(0). (2)

The first derivative of ψ is zero at the left boundary due to the no slip condition. This gives

0 = xewe + δ3mψxxx(0), (3)

which means that the vorticity inserted by the Ekman pumping must be dissipated by the
sublayer. We verify that (1.20) is a solution to Eq. 3

xewe = xeweδ
3
m(
δm
δs

)3/2
1

δ3s(δm/δs)9/2
. (4)

We can also look at the streamlines that go through the Stommel layer. Performing an integral
around the vorticity from the Stommel layer at 0+ to the right edge at xe of the Stommel solution
(φ) similar to Eq. 1, gives

0 = xewe(0+) + δsφx(0+). (5)

We can verify that the solution previously obtained matches this condition

0 = xewe(0+)− δsxewe(0+)/δS . (6)

This means that for the total solution of the stream function obtained the vorticity of the
streamlines that pass through the Stommel layer are balanced by bottom friction.
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1.2 Vorticity Balance along y - direction

We perform an integral of the vorticity equation (Eq. ??) for an area R of the boundary layer from
two arbitrary latitudes y1 to y2.∫

R
δ2I∇ · −→u ζdA+

∫
R
vdA+

∫
R
∇ · −→u hbdA = −δs

∫
R
ζdA+

∫
R
δ3m∇2ζdA. (7)

Because the velocity in the x-direction does not vary much with y, the local vorticity can be
approximated as

ζ ≈ vx. (8)

We assume that the bottom is flat, so that the term with hb is zero, then Eq. 7 becomes

1
2
δ2I [v

2(0, y1)− v2(0, y2)] +
∫ y2

y1

ψl(0, y)dy = δs

∫ y2

y1

v(0, y)dy − δ3m
∫ y2

y1

ζx(0, y)dy. (9)

Using the no-slip condition at x = 0, this simplifies to∫ y2

y1

ψI(0, y)dy = −δ3m
∫ y2

y1

ζx(0, y)dy. (10)

The term on the left is the vorticity added due to the wind and the term on the right is
the dissipation of vorticity due to viscosity in the viscous sublayer. Because we have not fixed the
bounds on y, the vorticity added on any latitude is dissipated in the boundary layer at that latitude.
It should be noted that this interpretation is only valid under the assumption that vx � uy as stated
at the onset.

2 Inertial Boundary Layers

Previously we have assumed the δI term was small, but this is pretty unrealistic considering the
Reynolds number of ocean flows. We focus on a parameter region where inertial effects become
important, that is 1 � δI � δm � δs. To retain the inertial terms of highest order we re-scale the
x variable such that

ξ = x/δI . (11)

To order 1/δI the vorticity equation (Eq. ??) governs the inertial boundary layer, and is given
by

ψξψξξy − ψyψξξξ + ψξ = 0. (12)

Note that the left hand side is the same as the substantial derivative, so we write

D

Dt
(ψξξ + y) = 0 (13)

ψξξ + y = Q(ψ). (14)
(15)

This means that the vorticity is conserved along streamlines.
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2.1 Example

Assume that the velocity u is constant and ψ is independent of x far from the boundary. Then
ψξξ=0 and we can solve Eq. 14 far from the boundary to get

y = Q(ψ). (16)

Using the definition of the stream function we find that

ψ = −uy (17)

far from the boundary. Here the integration constant is arbitrary and set to zero.
Now we apply Eq. 17 for ψ in the boundary region to obtain

Q(ψ) = −ψ/u (18)
ψξξ + y = −ψ/u (19)

ψ = A(y)eψ/
√
−u +B(y)e−ψ/

√
−u + uy. (20)

We eliminate the A(y) term because we need ψ to be bounded in x in order to match it to an
inner solution where ξ goes to infinity. We use the no penetration condition on u, but allow the
fluid to slip along the x = 0 edge. Again, setting the integration constant to zero gives

ψ = uy(1− e−ξ/
√
−u). (21)

We know that the interior flow needs to be westward, so this expression cannot close the
circulation; it also does not satisfy the no slip condition at x = 0.

2.2 Inertial Sub-layer Thickness

Looking at the balance of vorticity of an inertial sub-layer solution it can be seen that the vorticity
input by the wind needs to be balanced by the viscous sub-layer; however, most streamlines do
not go through the viscous sub-layer, therefore there is an accumulation of vorticity. We define a
re-scaled Reynolds number as Re = UL/A∗δI = δ3I/δ

3
m, then numerical simulations by Fox-Kemper

Fox-Kemper (2003) show that for Re = 1.95 the solution is stable, but at Re = 4.29 there is an
inertial runaway.

3 Enhanced Sub-layer

Fox-Kemper and Pedlosky’s Fox-Kemper and Pedlosky (2004) solution to the inertial runaway is
to modify the momentum mixing viscosity such that it captures two dissipation mechanisms. The
first is the effect of unresolved eddies in the interior and the boundary layers. The second is the
interaction of the fluid with the boundary. These effects were incorporated into the Munk layer as

δ3m =
δ3I
Rei

+ (
δ3I
Reb

−
δ3I
Rei

)(e−x/δd + e−(1−x)/δd) (22)

such that the effect is continuous as x is varied. The first term in the summation represents the
unresolved eddies, the second term is the interaction with the boundary (which is at x=1). The
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two Reynolds numbers and the thickness of the region where the boundary viscosity is enhanced
are given by

Rei = (
δI
δm

)3interior (23)

Reb = (
δI
δm

)3boundary (24)

δd =
δI√
ReI

. (25)

The effect of this enhanced dissipation mechanism can be seen in Figure 1. As the boundary
layer Reynolds number is decreased the vorticity decreases due to dissipation in the boundary
layer. The same is true of the interior Reynolds number. The energy of the system also decreases
as either of the Reynolds numbers are decreased. Shown in the lower right hand corner of Figure
1 is a situation with a large internal vorticity (larger than what was unstable in section 2.2), but
this vorticity is dissipated to the boundary region.

Rei = 8Rei = 3

Re
b =

 0
.1

Re
b =

 3

Figure 1: Streamlines for various Rei and Reb. Shaded regions are of negative vorticity. Figure
taken from Fox-Kemper (2003).
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Internal boundary layers in the ocean circulation

Lecture 9 by Andrew Wells

We have so far considered boundary layers adjacent to physical boundaries. However, it is also
possible to find boundary layers in the interior of the fluid domain. Two specific examples which
we will discuss later are the oceanic thermocline and the equatorial undercurrent.

1 A simple example of an internal boundary layer: heat flow in a
pipe

To demonstrate some of the characteristics of internal boundary layers we first consider a simple
problem. Consider one-dimensional flow in a cylindrical pipe as shown in figure 1. The fluid is
initially at a uniform temperature T0 throughout the pipe, with flow at a constant velocity U
along the length of the pipe. For time t ≥ 0 the opening of the pipe is heated and maintained
at a constant temperature T1. The transfer of heat down the pipe can be described by the one
dimensional advection-diffusion equation

∂T

∂t
+ U

∂T

∂x
= κ

∂2T

∂x2
. (1)

The thermal diffusivity κ is typically small, and so as a first approximation we might neglect the
diffusion term on the right hand side of (1). This yields the solution

T = T1 x− Ut ≤ 0, (2)
T = T0 x− Ut > 0, (3)

corresponding to a discontinuous jump in temperature propagating down the pipe at velocity U , as
shown in figure 2(a). Clearly the discontinuity is unphysical, and we need an internal boundary layer

Figure 1: Fluid is pumped down a cylindrical pipe at a constant velocity U parallel to the pipe
axis. The temperature is maintained at the constant value T1 at the opening of the pipe at x = 0,
with the remainder of the fluid initially at a temperature T0.
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Figure 2: Snapshots of the temperature variation along the pipe, taken at a fixed value of t. (a)
The solution in the absence of diffusion, showing a discontinuous jump in temperature. (b) The
solution of the full advection diffusion equation. Diffusion acts to smooth the jump across an
internal boundary layer of width δ = O(

√
κt).

to smooth it out. The discontinuity arises due to the neglect of the diffusion term, mathematically
giving a singular perturbation.

In this case we can obtain a solution of the full heat equation with the diffusion term included.
We introduce a new system of co-ordinates moving with the shock, ξ = x − Ut and τ = t , so
that (1) yields

∂T

∂τ
= κ

∂2T

∂ξ2
. (4)

In this reference frame, there are no imposed horizontal lengthscales and so we obtain the similarity
solution

T =
T0 + T1

2
+
T0 − T1

2
erf

(
ξ

2
√
κτ

)
, (5)

where the error function is defined as

erf(x) =
∫ x

0
exp

(
−u2

)
du. (6)

The full solution is plotted in figure 2(b), where we see that the jump in temperature has been
smoothed out by diffusion over an internal boundary layer of width δ = O(

√
κt). In the following

discussion we will see that several structures of the ocean circulation are explained by the presence
of internal boundary layers within the ocean.

2 The ventilated thermocline

The sub-tropical oceans have an interesting density profile, with a rapid variation in density over
the upper kilometer of depth and a much weaker density gradient in the abyss at depths of 1 to
5.5 km. Typical density profiles in the Pacific Ocean are plotted in figure 3. The upper region
of rapid variation, or thermocline, shows a distinct bowl-like shape in each hemisphere with the
isopycnals sloping upward as we approach both poles and also as we approach the equator.

We outline a qualitative description of the dynamics here to motivate the detailed mathematical
model presented in §2.1. The abyssal deep water beneath the thermocline is of polar origin and
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Figure 3: The zonally averaged potential density field for the Pacific Ocean. Note the change of
vertical scale below 1000km reflecting the decrease in stratification below this depth. Image from
Pedlosky (1998).

80



is thought to slowly upwell at mid-latitudes, establishing a temperature contrast with the warmer
waters of the thermocline. The atmosphere imposes a temperature distribution on the surface of
the ocean. This generates a decrease in surface density from the poles to the equator and hence the
ispoycnals must intersect the surface. The surface wind stress in the sub-tropical gyres produces
a downward Ekman pumping, carrying the surface density distribution downwards to generate a
vertical density stratification. However, it is not immediately clear why we have an upwelling of the
density distribution at low latitudes, creating a strongly stratified upper ocean close to the equator.
By analogy with our pipe flow example, we might think of the downward pumping of the density
distribution being interrupted in an internal boundary layer close to the equator, where a different
dynamical balance takes over.

In the following section we develop a model of the ventilated thermocline, and use it to answer
two principal questions:

1. Why does the isopycnal bowl become shallow at low latitudes?

2. Why does the surface forcing only penetrate to 1km?

2.1 The LPS model of the ventilated thermocline

Luyten et al. (1983) developed a model of the thermocline by considering the upper ocean as
consisting of a series of layers of constant density. The entire wind driven circulation in the sub-
tropical gyre is driven by a downward Ekman pumping of typical magnitude we ≈ 10−4cm s−1,
generated by the wind shear stress exerted on the ocean surface. This is incorporated into the
model by imposing an Ekman flux

we = k̂ · ∇ × τ

ρf
, (7)

at the upper ocean surface as derived in a previous lecture (we do not resolve the upper mixed
layer here.) We will consider a model with steady motion in two layers with thicknesses h1(x, y)
and h2(x, y), lying above a deep abyss that is at rest. The structure and notation is illustrated
schematically in figure 4. Note that the isopycnal at z = −h1, marking the lower boundary of layer
1, outcrops at the latitude y = y2 so that layer 2 is in contact with the surface forcing for y > y2.
This model is rather simplistic, but it describes the key characteristics of the circulation and it is
possible to use it to construct a continuum model by resolving further layers.

2.1.1 Governing equations

We assume that the fluid flow is steady and effectively inviscid in the interior, with frictional effects
confined to the surface Ekman layers and described by the imposed Ekman flux we. We treat the
flow in each layer using inviscid shallow water theory, so that there is negligible frictional stress
between the layers and no normal flow across the density interfaces. Applying mass conservation
to each layer we obtain

∂

∂x
(u2h2) +

∂

∂y
(v2h2) = −we y > y2,

= 0 y < y2, (8)
∂

∂x
(u1h1) +

∂

∂y
(v1h1) = −we y < y2. (9)
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Figure 4: The two layer LPS model. The co-ordinates (x, y, z) vary with longitude, latitude and
depth respectively. Fluid of density ρ1 and pressure p1(x, y, z) flows with velocity u1(x, y) in a layer
−h1(x, y) < z < 0. This overlies fluid of density ρ2, pressure p2 and velocity u2 in −(h1 + h2) <
z < −h1. The abyssal layer of density ρ3 is at rest in z < −(h1 + h2). The circulation is driven by
an imposed Ekman downwelling velocity we.

In a steady state the horizontal mass flux in each layer changes only due to fluid input across the
upper and lower interfaces. Hence each layer is fed by an Ekman pumping we while in contact with
the free surface, and then after becoming submerged has no divergence of the horizontal mass flux
because there is no normal flow across density interfaces.

In previous chapters we have seen that the dominant terms in the momentum balance will
depend on the relevant scales for the problem. The Coriolis parameter is given by f = 2Ω sin θ
where θ varies with latitude y. We let β = ∂f/∂y describe the variation of the Coriolis parameter
with latitude. For a typical oceanic basin scale L and horizontal velocity U we have U/βL2 � 1,
so that the inertial scale is small relative to the basin scale. Alternatively we might think of this
as implying that relative velocity gradients are small compared to planetary vorticity gradients.
We can therefore neglect the non-linear advection terms, in addition to the viscous terms, so that
the appropriate horizontal momentum equations are those of planetary geostrophic balance and
hydrostatic balance in each layer. This gives

ρnfvn =
∂pn

∂x
, (10)

ρnfun = −∂pn

∂y
, (11)

ρng = −∂pn

∂z
, (12)

∂un

∂x
+
∂vn

∂y
+
∂wn

∂z
= 0. (13)

where the final equation describes incompressibility. We can combine (10), (11) and (13) to derive
the Sverdrup balance in each layer

βvn = f
∂wn

∂z
. (14)
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Integrating vertically over all layers, and using continuity of wn at each density interface we obtain

β
∑

n

vnhn = fwe. (15)

It will also prove useful to consider the evolution of the potential vorticity in each layer, f/hn.
Using incompressibility (13) to eliminate ∂w/∂z from the Sverdrup balance (14) and combining
with the mass conservation relations (8-9) we obtain, after some algebra,

u2
∂

∂x

(
f

h2

)
+ v2

∂

∂y

(
f

h2

)
=

f

h2
2

weΘ [y − y2] , (16)

u1
∂

∂x

(
f

h1

)
+ v1

∂

∂y

(
f

h2

)
=

f

h2
1

weΘ [y2 − y] . (17)

We use Θ to denote the Heaviside step function here,

Θ [x] =
{

1 x > 0,
0 x < 0.

We note that potential vorticity is conserved in submerged layers, and it changes only due to Ekman
pumping when the layer is in contact with the surface.

The horizontal pressure gradient in each layer can be related to the layer thicknesses. Verti-
cally integrating the hydrostatic balance (12) and substituting into the geostrophic balance condi-
tions (10-11) we obtain

fu2 = − ∂

∂y
(γ2h) , fv2 =

∂

∂x
(γ2h) , (18)

fu1 = − ∂

∂y
(γ2h+ γ1h1) , fv1 =

∂

∂x
(γ2h+ γ1h1) , (19)

where h = h1 + h2 and the relevant reduced gravities are

γ1 =
ρ2 − ρ1

ρ0
g, γ2 =

ρ3 − ρ2

ρ0
g. (20)

2.1.2 Solution for the single moving layer

At large latitudes (y > y2) layer 2 is in direct contact with the ocean surface and forms the
only active layer, so that h = h2. The depth-integrated Sverdrup balance (15) and geostrophic
balance (18) then yield

βv2h2 = fwe, v2 =
γ2

f

∂h2

∂x
. (21)

Eliminating v2 we obtain a differential equation for h2

∂h2
2

∂x
= 2

f2

βγ2
we. (22)

There is no normal flow across the eastern boundary of the basin, and so u2 = 0 at x = xe. In
general we can satisfy this condition by taking h2 as a constant - however for our purposes it is
sufficient to assume h2 = 0 at x = xe, so that upper layer has zero depth at the boundary. We
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ignore the details of the boundary conditions on the western boundary here, and assume that these
are satisfied by an appropriate western boundary current similar to that obtained in the previous
chapter. Integrating (22) gives the layer depth

h2
2 = −2

f2

βγ2

∫ xe

x
we(x′, y) dx′ for y ≥ y2. (23)

The entire solution is uniquely specified in terms of h2 for y ≥ y2, with the horizontal velocities
given by the conditions of geostrophic balance (18).

2.1.3 Solution for two moving layers

As we move closer to the equator layer 2 is subducted under layer 1 for y ≤ y2. The Ekman
pumping then transfers to layer 1, so that the subducted layer is no longer driven directly by the
surface forcing. The potential vorticity equation (16) for layer 2 then yields

u2 · ∇
(
f

h2

)
= 0 (24)

so that the potential vorticity is conserved on each streamline. We define a geostrophic stream-
function ψ2, such that fv2 = γ2∂ψ2/∂x and fu2 = −γ2∂ψ2/∂y. We can then satisfy geostrophic
balance (18) in layer 2 by setting ψ2 = h. Hence we can write

f

h2
= Q2(h) (25)

for an arbitrary function Q2, so that the potential vorticity is a function of streamline.
In order to determine the form of Q2, we consider matching of the two solutions at the subduc-

tion point y = y2, where h1 = 0, h = h2 and f = f2. The constant f2 is defined by

f2 ≡ f0 + βy2. (26)

Substituting these values into (25) we determine

Q2 [h2(x, y2)] =
f2

h2(x, y2)
=

f2

h(x, y2)
, (27)

so that we can write the potential vorticity as

f

h2(x, y)
=

f2

h(x, y)
, (28)

at any point in layer 2 with y ≤ y2. We can use the potential vorticity relation (28) to express the
individual layer thicknesses in terms of f and h, giving

h1 =
(

1− f

f2

)
h, h2 =

f

f2
h. (29)

In order to determine the evolution of h we again use the depth integrated Sverdrup balance (15).
The geostrophic balance relations (18-19) can be used to eliminate v1 and v2, so that we obtain

∂

∂x

(
h2 +

γ1

γ2
h2

1

)
= 2

f2

βγ2
we. (30)
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The appropriate boundary conditions are h = h1 = h2 = 0 at x = xe, required to enforce no normal
flow at the Eastern boundary. Integrating (30) gives

h2 +
γ1

γ2
h2

1 = −2
f2

βγ2

∫ xe

x
we(x′, y) dx′ for y ≤ y2. (31)

We eliminate h1 in favor of h using (29) and obtain a solution for h in y < y2, given by

h =

(
D2

0

)1/2[
1 + γ1

γ2

(
1− f

f2

)2
]1/2

, (32)

where

D2
0 ≡ −2

f2

βγ2

∫ xe

x
we(x′, y) dx′ ≥ 0. (33)

The characteristic depth D0 is a measure of the strength of the Ekman pumping which is forcing
the circulation.

2.1.4 Structure of the full solution

We now look at the detailed structure of the solution for a particular example of Ekman pumping.
Figure 5 shows calculated layer depths for an idealized Ekman pumping given by

we = sin
(
πf

f0

)
. (34)

The contours show the characteristic bowl structure as seen in field observations of the thermocline

h1

h2

y

z

Figure 5: Plot of variation of the with latitude y of the density interfaces at z = −h1 and z=−h
for we = sin(πf/f0).

density structure (see figure 3.) The horizontal circulation is plotted in figure 6. The layer 1
circulation, confined to y < y2, shows a similar qualitative circulation pattern to that given by
the Sverdrup interior solution for a homogenous fluid. The layer 2 streamlines show the same
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Figure 6: Plots of streamlines in layer 1 (blue curves) and layer 2 (red curves) in a square oceanic
basin, for we = sin(πf/f0). The blue dashed line shows the line y = y2, where layer 2 subducts
under the Northern most edge of layer 1. The red dotted curve marks the edge of a shadow zone
in layer 2, with no flow to the South of this curve.

characteristic shape, except in a shadow zone towards the South-East of the basin. This shadow
zone is an interesting prediction of the theory and can be explained as follows. The no normal flow
boundary condition on the Eastern boundary requires that h2 is constant on x = xe. However,
after layer 2 subducts and loses contact with the surface we have conservation of potential vorticity
on streamlines (u2 · ∇(f/h2) = 0 for y < y2). Since f varies with y, we cannot satisfy the potential
vorticity condition with constant h2, unless u2 = 0 in a stagnant shadow zone adjacent to the
boundary.

We now consider the behavior of the solution as we approach the equator at y = 0. If the wind
stress τ is aligned in the x direction, we have

we = − ∂

∂y

(
τ

ρ0f

)
= − 1

ρ0f

∂τ

∂y
+

β

ρ0f2
τ, (35)

and (33) becomes

D2
0 = (xe − x)

2
ρ0γ2

(
∂τ

∂y

f

β
− τ

)
. (36)

As f → 0, D2
0 approaches the finite value

D2
0 = −τ(xe − x)

2
ρ0γ2

. (37)

At low latitudes the trade winds generate a negative shear stress τ < 0, and so (32) implies that
the layer thicknesses remain finite as y → 0 and we approach the equator. However, if geostrophic
balance is still to hold,

v2 =
γ2

f

∂h

∂x
, (38)
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so that v2 diverges as f → 0. This singularity is clearly unphysical, and reflects the fact that a new
physical balance must become important near the equator. We will resolve this problem in §2.1.6
by introducing an inertial boundary layer close to the equator, where the dynamical balances are
modified.

2.1.5 Extensions and the continuous model

The simple model we have developed can be extended to improve the description of the physical
processes at work. Rhines and Young (1982)considered how the wind driven circulation might
impact directly on the lower layer and the ideas were developed further by Pedlosky and Young
(1983) (see also Pedlosky, 1998). The extension towards a continuous model was considered by
Huang (1989), who added a larger number of layers into the model. As the number of layers
increases we approach a high resolution finite difference approximation to the continuous form of
the solution. This solution also shows upwelling of isopycnals as we approach the equator.

2.1.6 The equatorial inertial boundary layer

Our current model of the thermocline breaks down as y → 0 and we approach the equator, with
geostrophic balance implying a divergence of the equator-ward velocity v2 (we can also deduce a
similar result for layer 1.) This singularity occurs due to the neglect of certain terms in the governing
equations - in order to heal the singularity we must reintroduce the relevant terms to make sure we
capture the correct physical balances. We return to the full non-linear inviscid governing equations
in each layer, with mass conservation and horizontal momentum conservation in each layer yielding

∂

∂x
(unhn) +

∂

∂y
(vnhn) = 0, (39)

un
∂un

∂x
+ vn

∂un

∂y
− βyvn = − 1

ρ0

∂pn

∂x
, (40)

un
∂vn

∂x
+ vn

∂vn

∂y
+ βyun = − 1

ρ0

∂pn

∂y
. (41)

We note that near to the equator the Coriolis parameter is approximately linear in y, so that
f = 2Ω sin θ ≈ βy.

To determine the appropriate balances, we consider the scaling of all terms in the governing
equations. We set

(x, y) = (Lx′, ly′), h = Hh′, (u, v) = U

(
u′,

l

L
v′

)
, p = ρ0βl

2Up′, (42)

where l, L and H are all lengthscales, and U is the appropriate velocity scale. Typically the basin
width is L ≈ 1000km and we will show that the width of the equatorial layer is l ≈ 100km, so
that l� L. Note that the scaling of the pressure has been chosen for a system where the pressure
gradient will be of the same order as the coriolis acceleration. With these scalings in place, the
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non-dimensional forms of (39-41) are

∂

∂x′
(
u′nh

′
n

)
+

∂

∂y′
(
v′nh

′
n

)
= 0, (43)

U

βl2

(
u′n
∂u′n
∂x′

+ v′n
∂u′n
∂y′

)
− y′v′n = −∂p

′
n

∂x′
, (44)

U

βl2
l2

L2

(
u′n
∂v′n
∂x′

+ v′n
∂v′n
∂y′

)
+ y′u′n = −∂p

′
n

∂y′
. (45)

In order to avoid singular behavior of v as y → 0, we need to include the non-linear inertia terms
in the x-momentum balance (44). This requires that

U/βl2 = O(1). (46)

The retention of some non-linearity reflects the fact that the relative component of vorticity becomes
comparable to, and exceeds the planetary vorticity as we approach the equator. However, we can
neglect the inertial terms in (45) due to the extra factor of l/L � 1, so that the y-momentum is
in geostrophic balance. We have a loss of symmetry in a narrow region close to the equator, with
only the x-component of inertia being important - this is sometimes called semi-geostrophy.

We require two further scaling relations in order to determine the depth scale H, boundary layer
width l and velocity U uniquely in terms of the imposed physical scales. We assume the pressure
will satisfy hydrostatic balance, so that

p ∼ ρ0γ2H ∼ ρ0Uβl
2, (47)

where the second balance is obtained from the direct scaling introduced for p. We determine a
scale for H by assuming smooth matching of the depth of the thermocline outside of the internal
boundary layer. This requires H ∼ D0, so that scaling of (36) yields

H2 =
τL

ρ0γ2
. (48)

Combining (46-48) we obtain the lengthscales

l =
(
γ2τL

ρ0β4

)1/8

, H =
(
τL

γ2ρ0

)1/2

, U =
(
γ2τL

ρ0

)1/4

. (49)

Using typical oceanic values of γ ≈ 0.01m s−2, L ≈ 1000km and τ ≈ 0.01m2 s−2, we find that
l ≈ 200km, H ≈ 100m and U ≈ 1ms−1.
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Internal boundary layers in the ocean circulation

Lecture 10 by Jan Zika

This section follows on from Andy’s ‘Internal boundary layers in the ocean circulation’.

1 Equations of motion in the equatorial region

We may now define the scaled boundary layer equations

− (y + ζn)vn = −∂Bn

∂y
, ζn = −∂un

∂y
. (1)

Here the Bernoulli potential is defined as

Bn = Pn +
1
2
u2

n (2)

and close to the equator we assume the relative vorticity is dominated by its local component −∂u
∂y .

Beneath the surface, the streamfunction (ψ) may be defined on each layer such that

hn~un = k̂ ×∇ψn. (3)

We also define the potential vorticity

qn =
y − ∂un

∂y

hn
, (4)

which is the combination of both the planetary and relative components of vorticity. By combining
(3) and (5), the streamfunction and Bernoulli function may be related by

qn
∂ψn

∂x
=

∂Bn

∂x
, (5)

and combined with zonal geostrophy (yun = −∂Pn
∂y ) equation (4) may be extended to

qn∇ψn = ∇Bn. (6)

Here the gradient of the Bernoulli function is related to the motion of potential vorticity. Although
Bn is a closely related to streamfunction in rotating flows, in areas of no rotation this is not so
(i.e. consider a non rotating flow where qn = 0 hence Bn is a constant whereas there can by a
complicated function for the flow (ψ) but for a rotating fluid the functions are intimately linked).
By taking the dot product of ~un on both sides of (6), we may derive the following relationships in
the equatorial region

qn~un · ∇ψn = ~un · ∇Bn. (7)
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Above this region, ~un · ∇ψn = 0 by definition. Also, the streamfunction and potential vorticity are
related by ∇qn ×∇ψn = 0, and from this and (7)

~un · ∇qn = o & ~un · ∇Bn = 0. (8)

So, in this equatorial region both qn and Bn are conserved on streamlines and hence they may be
related to one and another on each layer by the function Qn such that

qn = Qn(Bn) (9)

i.e. when Bn is constant on a streamline (qn must be also). Assuming the flow is once again
hydrostatic the pressure p on layers 1 and 2 may be represented in terms of the depth h such that
p2 = h, p1 = h + Γ12h1 for Γi,j = γi

γj
. Writing the relationship between potential vorticity and B

for layer 2 in full,

y − ∂u2
∂y

h2
= Qn(h+

1
2
u2

2). (10)

For geostrophic balance of u2, we must have ∂h
∂y = −yu2. We have defined systems of equations

that describe both the large f midlatitude regions and those of small f close to the equator. It is
now pertinent to merge the two solutions and derive a solution for the full system.

2 Linking the equatorial and mid-latitude regions

The physically important question now arises as to what Q2 must be in order to link the equatorial
regions to those of the multitudes in a consistent way. For large y (where y is a coordinate of the
equatorial region), the solutions must merge. About the transition region on layer 2

q2 ≈
y

h2
B2 ≈ h. (11)

Using (11) from the ventilated thermocline solution we have

Q2(B2) =
y2

B2
(12)

and hence

y − ∂u2
∂y

h2
=

y2

h+ 1
2u

2
2

. (13)

As Joe pointed out in the principal lectures, equation (13) is the water parcel analogy to marriage.
A girl with a lot of potential (y2) is united with a boy of great thickness (h2) at high latitudes.
Together the flow of life takes them to lower latitudes and although the girl develops added spin
(∂u2

∂y ) and the boy becomes more energetic (1
2u

2
2), the relationship between the now man and

woman remains the same. However, as Antonello points out, there is a lot of turbulence in the
world and such simple models are often not able to be generalized. It is left to the reader to derive
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a relationship incorporating turbulent terms (both theoretically and experimentally).We may now
simply define the following set of ODEs in y only.

∂u2

∂y
= y − y2

h+ 1
2u

2
2

; (14)

∂h

∂y
= −yu2; (15)

h2 = h− h1. (16)

In order for the system defined above to be solved we require a relationship between the depth h
and thickness of layer 2 h2. As the solution must hold for the equatorial regions, the Sverdrup
relation breaks down and may not be applied here. We will thus attempt to match the solutions at
the equatorial boundary. It is feasible to add additional layers, because it is simply the relationship
between h1 and h2 that we desire. Indeed the inclusion of additional layers reduces the influence
of our assumptions about h at the surface.

We will apply two closure techniques. In both cases we allow the solutions to merge at yn >> 1.
The first closure assumes that

h(x, y) = h(x, yn) (17)

for all y and the second assumes

h(x, y) = h1(x, yn) +
h(x, yn)− h(x, y)

Γ12
, (18)

which implies that the upper layer pressure gradient is independent of y (a somewhat ‘sketchy’
assumption that should suffice for the present). In order to conserve potential vorticity we may
allow no normal flow across the equator. So at y = 0 B2 = const. = B0 where Bo = h(0, yn). So B0

will be the final value of h as it makes a transition from higher latitudes to y=0 (figure 1). Thus

u2h2 =
1
q2

∂B2

∂y
= − ∂

∂y

(
B2

2

2y2

)
. (19)

Thus integrating from y = 0 to yn∫ yn

0
u2h2dy =

[
−

(
B2

2

2y2

)]yn

0

=
B2

0 − h2(0, yn)
2y2

. (20)

This integration may now be carried out for each x so that the closure is met at large y and
B2 = B0 at y = 0 for all x. This is done by the ‘shooting’ method, where u2 is guessed at y = yn

in an attempt to ‘hit’ B0, with the u2 guess being adjusted at each attempt. The method is
repeated iteratively until convergence to a solution for u and h. Figure 2 shows solutions, using
the second closure, gained through this method for various points in the domain. An interesting
result is the prediction of increased zonal velocity close to the equator. The feature is known as
the Equatorial Undercurrent (EUC). Indeed the increase in deep flow is coincident with shallowing
of the thermocline from west to east (Figure 3). The same essential result is gained using the
alternative closure (Figure 4).
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y

yn

B0
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Figure 1: Image showing how Bo is defined at yn as h(0, yn) defining a boundary higher and lower
latitudes.
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Figure 2: Solutions of (20) for u2 (solid line), ∂u2
∂y (dashed line) and h (dashed-dotted). In this

case Γ12 = 1 (second closure). The three panels correspond to profiles at x=0.25, 0.50 and 0.75
respectively. B0 = 1.265 and y2 = 5. Pedlosky (1987)
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Figure 3: Depth of the base of the moving thermocline layer representing the core of the undercur-
rent shown as a solid line at the equator and as a dashed line in the matching region at y = yn.
Pedlosky (1987)
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Figure 4: Profiles of u2, ∂u2
∂y , h, and h1 for the case in which (17) is satisfied. The parameters are

otherwise as in Figure (2). The calculation is at x = 0.5. The maximum eastward velocity is now
0.910.
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Figure 5: Lines of Constant B2, which are surrogates for streamlines, calculated from results of
2nd matching (figure 2). Pedlosky (1987)
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Analyzing the Bernoulli function B2 on layer 2 reveals the structure of the undercurrent (Figure
4) as lines of constant B are surrogates of streamlines. The flow is largely southward from the
matching region and steers towards the East as the equator is approached.

Modifications to this model, allowing for multiple layers, have been made and show that the
undercurrent is still present on deeper layers and reduces in magnitude away from the surface
(Figure 6). Indeed, this undercurrent is observed and known as the equatorial undercurrent (EUC)

Figure 6: Results of a four-layer model showing the monotonic decrease of the velocity with depth
in the undercurrent solution. (Courtesy of R Samelson, pers. comm.)

and has been observed as a clear zonal velocity maximum at around 120m depth in the Atlantic
and observed also in the Pacific (Figures 7 and 8). Numerical studies also predict this inertially
driven EUC (Figure 9).

3 The Internal Boundary Layer in the Thermocline

We now turn our attention to the boundary between the warm surface waters of the thermocline
and the dense abyssal waters derived from the poleward regions. We wish to consider the interaction
between the coldest water in the subtropical thermocline downwelled from the equatorward bound-
ary of a subpolar gyre and the denser waters below. In order to have a smooth transition between
these two regions, it has been anticipated Welander (1971) that a diffusive ‘internal’ layer might
exist. In order to explore this layer and its effect on the ocean and its sensitivity to the magnitude
of vertical diffusivity, we follow the approach of Samelson and Vallis Samelson and Vallis (1990).
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Figure 7: Panel a shows contours of zonal velocity measured using current meters in the Pacific.
Panel b show the density field of the same region. It should be noted that the meridional density
gradient vanishes at the equator. Johnson and Luther (1994)
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Figure 8: Evidence of the EUC from temperature and zonal velocity profiles from the Atlantic and
Pacific Oceans. In each case measurements represent 2-year means. Halpern and Weisberg (1994)
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Figure 9: Numerical studies McCreary (1994) show a shadow zone which strikes the equator within
the basin. In this case the EUC is fed from the subtropical gyre through the interior as well as the
western boundary current.

By assuming a geostrophic and Boussinesq fluid we may define the following set of equations:

− fv = −∂p
∂x
− εu , −fu = −∂p

∂y
− εv, (21)

∂u

∂x
+
∂v

∂y
+
∂w

∂dz
= 0. (22)

Here a traditional (and somewhat unsatisfying) friction term ε is included to avoid singularities in
u when f=0. We shall assume that the fluid is hydrostatic and conserve buoyancy (b = ρ−ρ0

ρ g)
such that

bt + ubx + vby + wbz = κvbzz + κH∇2b− λ∇4b &
∂p

∂z
= b, (23)

and the Laplacian is defined only in the horizontal (∇2 = ∂2

∂x2 + ∂2

∂y2 ). Specifying the Ekman pumping
and applying typical boundary conditions, a double structure of the thermocline is revealed (Figure
10). The temperature gradient in (10) reveals a local maxima at which point the vertical velocity
switches from a downward pumping to a deep positive w, which reduces with depth. Since w is
zero at the base of the adiabatic thermocline and the horizontal gradient of buoyancy is determined
by the slope of the isopycnals in the ventilated thermocline solution we may use the scalings

∂w

∂z
=
β

f
v ⇒ W =

β

f
Uδ (24)

uz = −by/f ⇒ ∆b
L

=
fU

Da
, (25)
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Figure 10: Vertical profiles of T (left panel), Tz (centre), and w (right) at the centre of the domain,
(x,y)=(0.5,0.5)
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and hence we define the vertical scale of the adiabatic thermocline Da as

D2
a

f2WeL

β∆b
. (26)

We see that in the region of the internal thermocline, vertical diffusion balances vertical advection
(Figure 11) such that wTz ≈ κTzz (in this model T is a proxy for b) and such that the vertical
velocity scales by W/δ κvδ

2. Again using scalings (24) and (25) we have

We =
β

f

∆b
L
Daδ =

κv

δ
& δ =

(
κfL

β∆bDa

)
(27)

⇒ δ = κ1/2
v

(
κf2L

β∆bWe

)1/4

(28)

Here we have uncovered a κ1/2
v relationship by using the scaling height δ which is the scale over

which the velocities u and w vary rather than the scale of the thermocline Da which yields a 1/3
power law. Analysis of the model of Samelson and Vallis indeed reveals the 1/2 power law as shown
in figure (12). So Samelson and Vallis, with their simple thermocline model, establish that the flux
through the internal boundary is intrinsically diffusive, scaling as κ1/2

z . Indeed others have treated
the internal boundary layer problem in a different way, looking at the entirety of the Thermocline
as a diffusive boundary layer. Salmon (1990) looks at this problem and combines the geostrophic
balance relationships

fv =
1
ρ0

∂P

∂x
& βv = f

∂w

∂z
(29)

to get

1
ρ0

∂P

∂x
=

f2

β

∂w

∂z
. (30)

It is implied from the above that there exists some function M such that

1
ρ0
P = Mz &

f2w

β
= Mx (31)

and therefore

u = −Mzy

f
, v = Mzx

f ,
gρ

ρ0
= Mzz. (32)

From density conservation (u · ∇ρ = κvρzz) the following relationship for M results

1
f

[MzxMzzy −MzyMzzx] +
β

f2
MxMzzz = κvMzzzz. (33)

If we take the simple case where M = M(x, z), using the scaling factors L,U, d, g′ and W and
writing (29) and the one dimensional density equation (wρz = κvρzz) in terms of these gives

U

d
=

g′

fL
, U = fW

βd , W =
κv

d
(34)
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Figure 11: Vertical profiles of terms in the thermodynamic equation for Kh = 0.002 with
Kv = 0.003 at (a) the centre of the domain, (x,y)=(0.5,0.5), and (b) near the western boundary,
(x,y)=(0.024,0.5). The profiles for horizontal advection (−uTx − vTy), vertical advection (−wTz),
vertical diffusion (κvTzz) and the horizontal (Laplacian plus biharmonic) diffusion (HD) are la-
beled accordingly. The corresponding profiles of T are also shown (right panels). The units are
T∗/t∗ = 5.4× 10−4Kyr−1.
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Figure 12: (a) Thickness of the internal peak of Tz versus κv, from the profiles in Figure 11. The
internal boundary layer scale δi and the advective-diffusive scale δ are also shown (dashed lines),
along with the corresponding thickness from solutions of the similarity equations (...) and (...). (b)
Maximum upward vertical velocity at (x,y)=(0.5,0.5) versus κv, from solutions in Figure 11. The
internal boundary layer scale Wi, the asymptotic estimate Winf = Winf and the advective-diffusive
scale Wd are also shown (dashed lines).
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and hence

d =
(
κvf

2L

βg′

)1/3

& W = κ2/3
v

(
βg′

f2L

)
. (35)

So, by this simple scaling argument we have found evidence for a thicker boundary layer and a
weaker vertical flow w below the thermocline. Solutions of the one-dimensional version of equation
(33) with appropriate boundary conditions applied at the surface and ocean bottom are shown in
figure (13). These indeed show a deeper boundary layer and small vertical velocity in the interior.

Figure 13: Solution of the one dimensional version of thermocline equation (33) for two different
values of the diffusivity: κ̂ = 3.2 × 10−3 (solid line) and κ̂ = 0.4 × 10−3 (dashed line), in the
domain 0 ≤ ẑ ≤ −1.‘Vertical velocity’ is W, ‘temperature’ is −Wẑẑ, and all units are the non-
dimensional ones of the equation itself. A negative vertical velocity, ŴE = −1, is imposed at the
surface (representing Ekman pumping) B0=10. The inertial boundary layer thickness increases as
κ̂1/3, so doubling in thickness requires an eightfold increase in κ̂. The upwelling velocity above the
internal boundary layer is much larger and almost independent of κ̂. The depth of the boundary
layer increases as Ŵ 1/2

E , so if ŴE = 0 the boundary layer is at the surface. Vallis (2006)

Somewhat different one-dimensional thermocline models have been described, and these have
slightly different scaling properties. However, their qualitative features are very similar. For ex-
ample, in both cases the thickness of the internal thermocline increases with increasing diffusivity
(κv), and the thickness gets smaller with increasing temperature difference across it. The strength
of the vertical velocity increases with increasing diffusivity also. This has an obvious implication
for the overturning circulation as the upwelling velocity is an integral component of it.
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Internal wave radiation from gravity current down a slope
in a stratified fluid

J. Hazewinkel
Supervisor: C. Cenedese

Abstract

Experiments with gravity currents in stratified domains thus far ignored the possible radi-
ation of internal waves. The main focus in those experiments has been on entrainment of
ambient fluid into the current. Here, we focus on a dense current streaming down a gentle
slope with very little entrainment of the ambient fluid. In a linearly stratified ambient, we
observe internal waves being radiated from the nose of the dense current. The nose clearly
slows down along the slope as its buoyancy difference with the ambient reduces. A simple
model for the nose position in time compared well with the observations. In none of the
experiments the internal waves emitted show a dominant frequency or wavelength. Rather,
a whole spectrum of frequencies and wavelengths are found. We observe three different
internal wave regimes, one in which the internal waves are observed close to the nose of
the dense current, one in which the internal waves radiate freely out from the nose and
one in which we do not find internal waves at all. In order to summarize the results we
define an ambient (or bulk) Froude number, Frb = U/(Nhc), based on the stratification
N , measured velocity U and the height of the current nose hc. Using this Froude number
we find the free internal waves for 1 < Frb <≈ 5. This range indicates that internal wave
emission from gravity currents is very dependent on ambient and local conditions of the
flow. In the broader range of currents observed in the ocean it is expected that only a small
part will meet these conditions.

1 Gravity currents
Gravity driven currents are naturally occurring flows that are found in atmosphere and
ocean. In the atmospheric boundary layer, the so called katabatic winds are driven by
dense air, formed by cooling, that flows downwards along the local topography. In the
ocean there are currents that are similarly driven by their density anomaly. For example,
at high latitudes brine rejection or extreme cooling at the surface increases the total density
of the water column. In the Arctic, this dense water eventually spills in overflows through
the Faroe Bank Channel and the Denmark Strait. These dense currents flow down the
topography into the stratified ocean until they come to their level of neutral buoyancy.
The dynamics of these dense overflow currents has been considered in both theoretical
and experimental studies. Some included the effect of rotation, others mainly considered
the effect of stratification. Cenedese et al. (2004) and Adduce & Cenedese (submitted)
included the effect of rotation in experiments with a dense current flowing down a slope in
a homogeneous ambient. Different flow regimes were observed that varied from laminar
flow, via a flow with roll waves, to a turbulent flow featuring breaking waves. Adduce &
Cenedese (submitted) considered the resulting mixing in these different regimes. Mixing
in dense currents in non-rotating but stratified environments has been quantified by Baines
(2001) and Baines (2005) for slopes with several angles. Also in these studies different
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regimes were identified, a gravity current regime and a plume regime. In the gravity
current regime a balance is reached between the buoyancy force and drag, the current has
a distinct upper interface. Mixing occurs only at this upper interface. In the plume regime
the current is detached from the topography.
Not on a slope but on a flat bottom, Maxworthy et al. (2002) considered the propagation of
a dense current in a stratified fluid, both experimentally and numerically. The dense fluid
was initially behind a lock and was then released into the ambient stratified fluid. They
used dye lines at regular heights to visualize the motion in the interior of the tank. When
the gravity current moved at a velocity larger than the internal waves sustain (current
faster than the fastest linear wave), the only waves seen were locked to the nose of the
current. In this, so called, supercritical regime their Froude number, Fr = U/(Nh) was
larger than 0.318, where U is the velocity of the nose of the dense current, h is the initial
(before release) height of the dense fluid and N the buoyancy frequency. For lower, or sub
critical, velocities the waves propagated out ahead of the nose of the current. However,
due to their method of visualization, they could not obtain a more detailed picture of the
internal waves, e.g. frequency or wavelength information, other than a sinusoidal raise
and fall of the dye lines.
Internal waves, as found in linearly stratified fluids, are distinctly different from inter-
facial (internal) waves. Internal waves in linear stratifications will only propagate away
from a disturbance if the frequency of the disturbance is less than the buoyancy frequency,
N =

√
g/ρ̄ ∂ρ′(z)/∂z. These internal waves will have the same frequency ω as the

disturbance. Also, the energy will propagate under an angle θ with the vertical, or grav-
itational direction, following the dispersion relation ω = N cos θ, Phillips (1977) and
Mowbray & Rarity (1967). Surprising at first, the dispersion relation also predicts that the
crest and troughs, i.e. the phase lines, travel perpendicular to the energy. Internal waves
in the ocean are usually described as vertical modes. However, due to the above curious
dispersion relation, near the generation areas this modal description breaks down while a
ray-like description becomes more appropriate. Sources of internal wave rays in the ocean
are predominantly the interaction of tides and topography as investigated in many studies.
In the experimental study of Aguilar et al. (2006) internal waves were generated by drag-
ging a sinusoidal ’topography’ through a linearly stratified fluid. They observed different
regimes in which waves could propagate freely into the ambient fluid or were evanescent
and beyond which turbulence took over.
The motivation of this study came from the combination of the roll waves on the dense
current observed by Cenedese et al. (2004) with the internal wave generation by a wave
pattern by Aguilar et al. (2006). We intended to investigate whether the roll waves could
be a source for internal wave generation. Since a dense current flowing down a slope
can be seen as a disturbance of the stratified ambience, it can be expected that internal
waves are found near a gravity current in a stratified fluid. The question is whether these
waves can take out energy from the flow and transport it over a long distance. Also the
investigation of a Froude number range for the existence of internal waves, as in previous
studies, will be of interest.
The remainder of this paper is as follows. Section 2 describes the experimental apparatus
used in this study. In Section 3 we present results from the experiments done followed by
some analysis in Section 4. In Section 5 we summarize and discuss these results.

2 Method
To study the generation of internal waves by dense currents we use a perspex tank hav-
ing dimensions 770 × 210 × 250 mm (length, width, height). The well known double
bucket method and salt are used to fill the tank with a stratification that linearly increases
with depth. The water depth in the tank will be denoted by H . The maximum salin-
ity, and thus the density, varied in each experiment. We present results from experiments
where the maximum salinity varies between the salinity of the sea water from the tap,
ρ ≈ 1.02g/cm3, to a very salty brine, ρ ≈ 1.1g/cm3. For the latter we use Morton’s
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Figure 1: Schematic of the experimental set up.

Kosher salt which does not contain supplements that affect the visibility of the water. Af-
ter filling the tank, we subtract samples from the fluid at several, typically six, vertical
positions. The density of these samples is measured by a Anton Paar densiometer with a
accuracy of 10−5 g/cm3.
In the earlier experiments, we would put the slope in after filling the tank. In this case, the
slope runs from the upper left side of the tank under an angle α down to the right side of
the tank. The source for the dense water is on top of the slope just below the surface. In
the second set of experiments (presented in this report) the slope was already in the tank
during the filling. In these experiments the lower side of the slope was at the bottom of
the tank. In both cases the source, on top of the slope, was connected via a pump with a
reservoir of water of density ρc, usually the same density as the fluid at the bottom of the
tank. In some experiments this dense water was dyed.
To measure the motions in the fluid non-intrusively, we use the synthetic schlieren tech-
nique (Dalziel et al. (2000)). Synthetic schlieren measures the refractive index changes of
a medium resulting from density perturbations. The principle is as follows. When a light-
ray propagates through the fluid, the direction of propagation of this ray will be altered
by the local value of the gradient of the index of refraction, see schematic in Figure 1. A
random dot pattern on a light bank at B = 0.2 m behind the tank is monitored through the
fluid. Density perturbations alter the refractive index and hence the direction of the light
and are observed as apparent movement of the dots. Unfortunately, the refractive index
of the air, between the tank and the point of observation, is also altered by unavoidable
temperature fluctuations in the laboratory. This leads to some ‘thermal noise’ contam-
inating the observations and to minimize the effect we had curtains extending from the
camera to the tank. To record the apparent movements, we use a Hitachi digital camera
positioned at L=3.2 m from the tank. We try to zoom in as much as possible on the region
of interest in the tank. Also, we minimize the aperture as much as possible in order the
reduce the errors resulting from light coming under an angle. As the buffer memory of the
pc used is limited, we could only take 320 frames per experiment. However, we varied
the amount of frames taken per second. Regarding an unperturbed reference image, the
perturbed position of the dots is translated into corresponding density gradient variations.
For this comparison and data processing we use the DigiFlow software. As we observe
the changes in the density gradient field, the stronger the undisturbed gradient field is, the
more the dots appear to move. For this reason the results of experiments with large N give
better results. Also, as the current ’lifts’ the whole stratification slightly in the vertical, we
observe in most experiments a constant mean change in the stratification. Thereby, when
the currents has passed the ambient fluid diffusive processes will smooth out the perturbed
stratification. We will call this process re-stratification. We will present the observations
as components of b = (bx, bz) = ∇ρ′/(dρ̄/dz), i.e. the perturbation density gradient
relative to the gradient of the unperturbed background stratification, (dρ̄/dz).

110



Experiment γ N ρc ρbot ρtop

s−1 g/cm3 g/cm3 g/cm3

030807 0.1 1.4 1.061 1.061 1.003
110807 0.05 1.7 1.071 1.073 1.009
130807 0.2 1.6 1.069 1.068 1.018
150807 0.1 0.9 1.022 1.022 1.004
160807 0.1 1.6 1.069 1.062 1.016

(default exp)

Table 1: Parameters of the experiments presented

Before the start of a typical experiment, we would leave the stratified tank undisturbed
for some time after connecting the source and reservoir. We do this, to let re-stratification
overcome small perturbations. At the start of the experiment there would be no flow down
the slope. Then, the pump will pump the dense water with a fixed flow rate Q, given in
cm3/s, into the source from where it enters the stratified fluid through a sponge. The
pump was left running for the time that frames were taken.

3 Results
Several experiments with different slopes and stratifications were performed. We present
results from the experiments listed in Table 1. In this table are listed the tangent of the
slope γ = tanα, the buoyancy frequency N , the density of the current ρc and the density
at the bottom/top of the tank ρbot,top. All experiments had a discharge Q = 2.1cm3s−1

and the slope ended at the bottom of the tank. We consider experiment 160807 as a default
experiment with a slope of γ = 0.1 and a stratification N = 1.6 s−1 and we will discuss
the differences observed in the other experiments. Note that in these experiments the
density of the current matches the density at the bottom of the tank.

3.1 Default experiment
Our default experiment has slope γ = 0.1 and a stratification N = 1.6 s−1. The descent
of the dense current is shown by three snapshots of bx and bz in Figures 2. The colour
indicates the positive or negative gradients of the perturbation density field. We observe
the descent of the dense current, shown by the darkest blue and red colour, Figures 2 a)
and b), going over the slope in Figures 2 c) and d) and Figures 2 e) and f). When the nose
is at intermediate depth, Figures 2 c) and d), internal waves are radiated from the nose
of the current. However, in the first snapshot, Figures 2 a) and b), the waves observed
are close to the nose of the current, whereas in Figures 2 c) and d) the waves are found
much further away. It is worth noticing that there is no clear defined angle under which
the waves propagate. Finally, in the third snapshot, Figures 2 e) and f), the nose does not
radiate any waves anymore although there is a remnant of the waves still visible from the
nose of the dense current.
In order to find the position of the nose in time along the slope, we take a section parallel
to the slope of bx in time a few pixels above the slope. This section is shown in Figure
3. In the first 20 seconds of the experiment the nose is not in the camera field of view
and no apparent movement is resolved. Figure 3 shows flat grey and changes gradation
as soon as the nose comes in and shows clearly the position of the nose (vertical axis)
in time (horizontal axis). Note that the velocity, or better displacement per time, of the
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Figure 2: Experiment 160807, three snapshots of bx (left) and bz (right), colour indicates value
as in colour bar f). Shown are times t=20 s a) and b), 45 s c) and d) and 70 s e) and f) after the
start of the experiment. Note that in the vertical gradient the re-stratification causes horizontal
lines in the bz data.
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Figure 3: Section of bx of Experiment 160807 parallel to the slope in time. The colour changes
indicates the position of the nose. Note the decrease in displacement in time

current nose clearly decreases along the slope. Obtaining an accurate velocity proved to
be problematic as the data of the positions in time is not a smooth/differentiable curve.
For later use, we take 10 cm bins and find the different times needed for the nose to travel
them. From this we get average velocities along the slope.

3.2 Changing N

The results for the experiments with the same slope angle but different stratification, Ex-
periments 030807 and 150807, show very similar qualitative results as observed in the
default experiment. However, the waves are observed to radiate out from the nose starting
from a point higher up on the slope. In Experiment 150807, after a short phase of bounded
waves, the whole recorded descent of the current shows that the waves radiated are com-
parable with the default experiment as in Figures 2 c) and d). In experiment 030807 the
waves disappear when the current slows down, similar as observed in Figures 2 e) and f).
The position of the nose in time, in the same section just above the slope as in the default
experiment, shows a lower velocities down slope. The positions in time of the current
nose for both experiments are presented in Figure 8 as the noisy lines. Time is off set
for clarity. Experiment 150807 (black line) shows very little slowdown while the velocity
in experiment 030807 (green line) shows a stronger change in velocity as the nose flows
down the slope.

3.3 Changing γ

We also carried out experiments with the same stratification as in the default experiment,
i.e. N = 1.6 s−1 but in which the slope angle is changed. For a steeper slope, γ = 0.2, we
observe the radiation of steep internal waves that remain close to the nose of the current,
as shown in Figure 4a). Down slope the current slows down and the internal wave field
resembles that of the default experiment (Figures 2 c and d). The position of the nose is
shown in Figure 8 by the blue line. In the experiment with a smaller slope, γ = 0.05, it
is difficult to observe anything at all. First, the current is difficult to distinguish from the
noise level and second, there are no internal waves generated by the dense current. Our
algorithm to detect the position of the nose failed for this experiment and we do not plot it
in Figure 8.

4 Analysis
In our default experiment we observe that the radiated internal waves do not seem to
have a clear angle of propagation or wave length. This observation seems generic for all
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Figure 4: bx for two different slopes a) γ = 0.2 and b) γ = 0.05. Colour as in Figure 2

Figure 5: Vertical section mid-slope of bz of the default experiment. a) shows the amplitude of
bz along this line in the vertical vs time in the horizontal, colour as in Figure 2. b) shows three
profiles from a).

experiments in which internal wave radiation is observed. This means that the following,
although only presented for the default experiment, applies to the other experiments. In
order to investigate whether there are dominant wave lengths or frequencies we take a
vertical section mid-slope of bz of the default experiment. This section runs from the
slope up to the surface, vertical axis in Figure 5 a). Presented is the amplitude of bz in
colour and the development in time (horizontal axis). As this section is mid-slope the nose
has not passed though it until t = 70s, clearly seen in Figure 5 a). The wavelength in
this section is observed to decrease as time increases, i.e. towards the nose, furthermore
waves are absent after t = 70s. Note that for t > 70s some horizontal lines appear, this
is the result of some re-stratification. We plot three individual sections at t = 30, 40 and
50s in Figure 5b), to show that indeed no dominant wavelength is observed and that there
is a clear decrease in wavelength in time. This result suggests that a whole range of wave
lengths in generated by the dense current flowing down a slope in a stratified ambient.
In order to investigate whether there are dominant frequencies of the waves emitted by
the dense current we take a second section. This section of bz (default experiment), is
taken parallel to the slope and 5 cm above it, Figure 6 a). The section is on the horizontal
axis and the time on the vertical, the colour is the amplitude of bz . Figure 6 a) shows
a wave pattern moving obliquely in time (vertical axis), which is expected as we have a
section parallel to the slope and the current nose is below it. Also, following the waves
obliquely, the intensity of the colour, and thus bz , diminishes along the slope. Time series
of three points along the section, are shown in Figure 6 b). All three the sections show that
a whole range of frequencies is generated, note the decreasing period of the sinusoidal
oscillations. This confirms the observation that a whole range of angles of propagation
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Figure 6: Section parallel to the slope of bz of the default experiment. a) shows the amplitude of
bz along this line in the horizontal vs time in the vertical, colour as in Figure 2 f). b) shows three
profiles from a).

(dispersion relation) is found.

4.1 Simple model for nose position
The current nose is observed to slow down along the slope. The first cause for this is the
increasing of the density of the surrounding fluid and the subsequent loss of buoyancy of
the current. We will describe the nose speed in terms of the reduced gravity and current
height hc

Uf =
√

g′(z)hc cos(α), g′(z) = g
ρc − ρ(z)

ρ̄
, (1)

based on Simpson & Britter (1979) but including the slope angle α. The vertical depen-
dence of the reduced gravity g′(z) is due to the decreasing difference in density between
the local ambient fluid, ρ(z), and the density of the current, ρc, as the current runs down
the slope. The vertical coordinate is antiparallel with unprimed g, the acceleration due
to gravity. We define z = 0 at the surface and ρ(0) = ρtop. Similarly, at the bottom,
z = −H , we will denote ρ(−H) = ρbot. We will assume that the stratification is linear
over the tank depth H , i.e. N2 = g (ρbot − ρtop)/Hρ̄ with ρ̄ the characteristic den-
sity of water. This means that we can express the density as a function of the depth, i.e.
ρ(z) = ρtop − N2ρ̄z/g. We also assume that the entrainment of ambient fluid into the
dense current, which would cause a change in ρc, is negligible. The above assumptions
combine in

U(z) =

√(
g(ρc − ρtop)

ρ̄
+ N2z

)
hc cos(α). (2)

This expression for U(z) shows that for decreasing z the velocity decreases and comes to
rest at the bottom, z = −H , for values of ρc = ρbot. From U(z) we find an expression for
U(s), where s = zsin(α) is the along slope coordinate. Integrating U(s) in time results
in the position on the slope of the current nose in time. Of the variables in Equation (2),
only the current thickness hc = O(1mm) is unknown, for the others see Table 1. As an
example we plot the position of the nose in experiment 160708 and two predictions in red
for the positions of the nose based on hc = 1mm and 0.5 mm. The two red curves show
similar positions for the nose in time as the observations, suggesting that our estimate for
the thickness of the current, hc = 1 mm, is reasonable.
Similarly, we find that the positions of the nose for all the experiments listed in Table 1
can be predicted by Equation (2) by using a thickness of hc =1mm for the current. A
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Figure 7: Position of the nose in experiment 160708 and two predictions in red for the positions
based on hc = 1mm and 0.5 mm.

combined plot of these nose positions (noisy lines) and theoretical curves (solid lines:
hc=1mm and dashed line hc=0.5mm) for the experiments listed in Table 1 are shown in
Figure 8. Profiles of different experiments are offset for clarity. We observe that of the ex-
periments with γ =0.1 and varying N (black, red and green curves) only the prediction for
experiment 030807 (green) is not accurate. Also for the nose position for the experiment
with the steeper slope (experiment 130807, blue) the prediction works, remember that we
did not have good data for experiment 110807. The fact that our observed and predicted
positions of the nose on the slope agree so well, suggests that little to no loss of velocity
is caused by internal wave radiation. After all, if there would be any loss this would show
up as a discrepancy from velocity loss due to buoyancy effects, i.e. our prediction.
As our observed nose velocities have values that are of order

√
g′(z)hc cos(α), the local

Froude number will always be

Fr =
U√

g′(z)hc cos(α)
≈ 1. (3)

Hence, the different regimes observed can not be related to the local Froude number.
However, we can make that distinction when we consider a bulk Frb = U/(Nhc), similar
to e.g. Aguilar & Sutherland (2006) and Maxworthy et al. (2002). It is worth remarking
that the relevant height is hc, since the slope or height of the free surface could in principle
be extended without influencing the internal waves regimes. The height of the current
however, plays a crucial role in determining the velocity of the nose and thus the radiation
of waves. This definition of Frb requires an estimate for the velocity of the nose. We
estimate these velocities by taking the displacements of the nose over several seconds and
subsequently calculate the average velocities. Assuming that hc = 1mm we find that the
Frb varies from 6 to 1, as shown in Table 2. Although it seems that bounded waves are
found from Frb > 4.3 in experiment 160807 we observe radiating waves in experiment
150807 with a Frb=5. This indicates that perhaps our definition of bounded and radiating
waves is not correct. Alternatively it might be argued that the thickness of the current
is assumed to be the same in all experiments, i.e. 1mm, and that this thickness could
vary between experiment and change the Froude numbers. In any case, Table 2 indicates
that a dense current flowing down a slope in a stratified ambiance radiates internal waves
Frb < 5.
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Figure 8: Comparison between observed position of current nose along the slope (noisy line) and
the model (solid (hc = 1 mm) and dashed lines(hc = 0.5 mm)). For clarity the profiles are set
off. Colour correspond to Experiment 030807(green), 130807(blue), 150807(black) and 160807
(red).

Experiment displacement (mm) 4t (s) average velocity (mm/s) Frb regime
030807 80 15 5.3 3.8 radiating waves
030807 28 20 1.4 1 horizontal waves
110807 - - <0.2 <0.1 no waves
130807 36 5 7.2 4.5 bounded waves
150807 55 10 5.5 6 bounded waves
150807 45 10 4.5 5 radiating waves
160807 34.5 5 6.9 4.3 bounded waves
160807 39 10 3.9 2.4 radiating waves
160807 14 5 1.8 1.1 horizontal waves

Table 2: Estimated values for Frb and the observed internal waves
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5 Discussion and Conclusions
In this report experiments are presented investigating internal wave generation from a
gravity current. We conclusively show that the nose of a gravity current does emit internal
waves. Originally, we intended to investigate whether or not the roll waves, observed
by Cenedese et al. (2004), would be a suitable generating mechanism for internal waves
comparable with the generation of internal wave by a sinusoidal topography (Aguilar &
Sutherland, 2006). However, the presented experiments were not in the roll wave regime.
For the highest Froude numbers investigated, the internal waves were bounded and the
current was still in the laminar regime. This suggests that the roll wave regime might be
outside the internal wave radiation regime and if occurring will not radiate internal waves.
However, at the lower Froude numbers we did observe internal waves radiating from the
nose of the dense current and found a clear dependence of the internal waves radiation on
the nose velocity. The nose velocity was well described by the local gravity wave velocity
and consequently depends on the unknown/unmeasurable height of the current. Using
a reasonable guess for the current height made it possible to compare the measured and
predicted position of the nose on the slope in time with good agreement for hc between 1
and 0.5 mm.
I thank Keith Bradley for his expertise in the laboratory, Steve Thorpe for useful sugges-
tions and the GFD staff and fellows for the summer. JH obtained a GFD Fellowship.
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Abstract

The dynamics of the thermal boundary layer below the free surface of the ocean can
be influenced by flows generated in the fluid interior, resulting in changes in sea surface
temperature. These thermal boundary layer dynamics are studied using laboratory
experiments with upwelling flows. The measured surface temperature is well described
by a non-dimensional formulation of previous theoretical results. This non-dimensional
formulation allows us to predict that internal waves are unlikely to be responsible for
large changes in sea surface temperature, but could have an important effect on the
transfer of gases between the ocean and atmosphere.

1 Introduction

Detailed modelling of the atmosphere and ocean requires knowledge of the sea surface
temperature, which influences the exchange of heat and mass across the air–water interface.
Small changes in sea surface temperature can significantly effect the air–sea heat exchange
and also change evaporation rates at the interface, leading to modifications in near surface
salinity. As a result, the thermal boundary layer near to the ocean surface, or skin layer, has
recently been an area of active research interest (e.g. Castro et al., 2003; Soloviev, 2007). The
thermal boundary layer plays an important role in controlling the sea surface temperature,
yet it lies at too small a scale to be resolved in global climate models or field observations.
The influence of the thermal boundary layer on sea surface temperature must therefore be
parameterised, and so a detailed understanding of the boundary layer dynamics is required
in order to provide an accurate parameterisation of the unresolved physics (Fairall et al.,
1996). We present a discussion of the effects of upwelling and downwelling flow on sea
surface temperature and experimentally investigate the resulting dynamics of the thermal
boundary layer.

Some of the pioneering measurements of the ocean skin layer were conducted by Wood-
cock & Stommel (1947), who observed colder temperatures close to the surface than in the
interior of salt and fresh water ponds. This has been followed by numerous field, laboratory,
theoretical and numerical studies. For low wind speeds a free convective boundary layer
develops, as summarised by Katsaros (1980). The dynamics are modified slightly in the pres-
ence of strong winds (see Saunders, 1967; Castro et al., 2003, for example), with additional
shear generated turbulence acting to thin the thermal boundary layer. The near-surface
boundary layer may also be modified by the presence of surface waves (see Katsaros, 1980,
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for a review), or surfactants (McKenna & McGillis, 2004). The dynamically similar problem
of air-sea gas transfer has also received considerable attention (Soloviev & Schlüssel, 1994;
Soloviev et al., 2007).

There have been comparatively fewer studies of the effect of sub-surface flows on the
free surface temperature. Infrared observations of the sea surface temperature have shown
banded thermal signatures consistent with the scales of internal waves (Walsh et al., 1998;
Marmorino et al., 2004; Zappa & Jessup, 2005; Farrar et al., 2007). This suggests that flow
structures generated within the ocean interior may be responsible for modifying the prop-
erties of the near surface thermal boundary layer. An increase in surface temperature had
also qualitatively been observed above an upwelling jet flow in the experiments of Ewing &
McAlister (1960). Osborne (1965) presented a theory to describe the modulation of surface
temperature by waves and other flows, and Leighton et al. (2003) used direct numerical
simulation to consider the effect of the local straining flow generated by convection cells.
However, there has been no detailed investigation of the dynamics described by the Osborne
(1965) theory.

We present a quantitative experimental investigation of the dynamics of the thermal
boundary layer in the presence of a local upwelling flow. In §2 we review the details of
previous theoretical treatments of the free convective boundary layer and the modifications
resulting from a straining flow applied near to the surface. A non-dimensional formulation
is presented that identifies different dynamical regimes for the thermal boundary layer, with
a corresponding difference in the resulting sea surface temperature. The non-dimensional
formulation allows us to identify the relevant regime for flows in the laboratory, and also in
the ocean. The experimental procedure and results are described in §3 and §4, respectively.
We observe a local increase in surface temperature above regions of upwelling flow, and
show that the Osborne (1965) and Leighton et al. (2003) theories both provide an accurate
description of the observed difference between the free surface and bulk temperatures. We
conclude with a discussion of implications for climate modelling in §5. A simple application
of the Osborne (1965) theory suggests that internal waves produce only a small effect on
sea surface temperature via the skin layer straining mechanism, but could be responsible
for significant change in ocean-atmosphere gas transfer.

2 Theoretical Background

The cool skin of the ocean can be considered as a laminar thermal boundary layer occurring
where oceanic turbulence is suppressed close to the free surface. The surface of the ocean is
cooled by radiative, evaporative and sensible heat fluxes from the ocean to the atmosphere.
The transfer of heat is purely by molecular conduction just below the ocean surface. Con-
servation of enthalpy across the air–water interface requires that the sub-surface conducted
heat flux must balance Q, the loss of heat to the atmosphere, so that

− ρcpκ
∂T

∂z

∣

∣

∣

∣

z=0

= Q = Qrad + Qevap + Qsens. (1)

The radiative component of ocean to atmosphere heat flux is denoted by Qrad, with Qevap

and Qsens the corresponding evaporative and sensible heat flux components, respectively.
Typically Q ≈ 200W m−2 for a daytime ocean to atmosphere heat flux (see Wick et al.,
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Figure 1: Schematic model of the surface thermal boundary layer of the ocean. A cold,
laminar conductive boundary layer overlies a turbulent well mixed interior.

1996, for example.).1 The ocean is confined to z < 0 and has temperature T , with density
ρ, specific heat capacity cp and thermal diffusivity κ. The removal of heat at the upper
surface leads to the formation of a thermal conductive boundary layer just below the surface
of the ocean. As we move deeper into the fluid the laminar surface layer breaks down due
to turbulent velocity and temperature fluctuations and we have a fully turbulent mixed
layer, as shown schematically in figure 1. Oceanic turbulence can be generated by buoyant
convection or by a surface wind stress, and acts to maintain a relatively uniform temperature
down to depths of metres or more.

2.1 Convective boundary layer in absence of imposed flow

For relatively calm conditions with negligible imposed wind shear, the dominant source
of mixed layer turbulence is from the buoyancy supplied by cooling at the ocean surface.
The dynamics of the resulting convective flow is well described by surface renewal mod-
els (Soloviev & Schlüssel, 1994) which build on the analysis of Howard (1966) for convec-
tion below a cooled surface. The ocean surface acts as an effectively impermeable upper
boundary, so that turbulence is suppressed in a laminar layer immediately below the sur-
face. The removal of heat into the atmosphere leads to a cooling of this surface layer, with
the thickness increasing in time as the cold layer grows downward by diffusion. The thick-
ness of the cold layer grows until a critical value of the Rayleigh number is exceeded. The
layer then becomes unstable and sheds filaments of cold fluid into the interior. This flux
of buoyancy helps to maintain the turbulence in the well mixed interior. Howard (1966)
derived an expression for the time-averaged temperature profile generated by this diffusive
growth mechanism, which can be expressed as

T (z) − TB

TS − TB
=

(

1 + 2ζ2
)

erfc ζ − 2π−1/2ζ exp(−ζ2). (2)

1A positive Q corresponds to a net heat flux from the ocean to the atmosphere in our notation. Note

that the opposite sign convention is used in some of the previous literature.
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The surface temperature is denoted TS , and TB is the temperature in the bulk, deep in the
mixed layer. The non-dimensional co-ordinate

ζ = −
√

π

4

z

δc
(3)

represents the depth scaled by the conductive lengthscale δc. One possibility is to identify
the diffusive lengthscale δc as the laminar layer thickness in the simplified model shown in
figure 1. If the temperature gradient is linear across the surface laminar layer we have

TB − TS =
Qδc

ρcpκ
, (4)

so that the bulk-skin temperature difference is determined by the heat flux Q and conductive
layer depth δc.

In the case of free convection, Saunders (1967) suggested that the conductive lengthscale
δc and bulk-skin temperature difference, TB − TS , can be uniquely determined in terms of
the heat flux Q by applying the ‘4/3rds’ convection heat transfer law for turbulent Rayleigh-
Bénard convection. Scaling theories suggest that

Q

ρcp
= Aκ

(

βg

κν

)1/3

∆T 4/3, (5)

for thermal convection of fluid between two isothermal horizontal plates, with the upper
surface cooled. The coefficient of thermal expansion is denoted by β, g is the acceleration
due to gravity, ν is the kinematic viscosity, ∆T = TB − TS is the temperature difference
between the plates and A = 0.20 is a constant of proportionality. We can combine (4)
and (5) to give

∆T = A−3/4

(

Q

ρcpκ

)3/4 (

κν

βg

)1/4

, (6)

δc = A−3/4

(

Q

ρcpκ

)

−1/4 (

κν

βg

)1/4

. (7)

so that the bulk–skin temperature difference and thermal boundary layer thickness are
determined uniquely by the heat flux applied at the surface. In section 4 we will consider
how (6) and (7) compare to the corresponding values observed in experiments.

In the ocean, the above picture of the thermal boundary layer is modified due to forced
convection generated by wind. Additional shear turbulence is generated by the applied
wind stress, acting to reduce the thickness of the laminar-thermal-boundary layer to δc =
O(1mm).

2.2 Modification of surface thermal boundary by straining flow

Osborne (1965) considered the structure of the thermal boundary layer near to the surface
in the presence of an applied flow and inferred variations in sea surface temperature due
to ocean waves. We discuss this modification to the surface renewal model below and its
implication for regions of local upwelling in the ocean.
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Figure 2: Geometry of the thermal boundary layer in the presence of an imposed internal
wave motion. The thermal boundary layer evolves quasi-statically below the free surface,
with the internal waves generating diverging and converging flow near to the surface. Typi-
cal vertical velocity and temperature profiles are plotted on the right hand side of the figure,
with the temperature field varying over a much shorter lengthscale than the velocity field.

Conservation of heat within the fluid is described by the Reynolds-averaged advection-
diffusion equation

∂T

∂t
+ u · ∇T = κ∇2T −∇ ·

(

u′T ′

)

, (8)

where (ξ) represents an ensemble average of a variable ξ over a time-scale longer than the
typical eddy turnover time-scale but shorter than any time-scale of variation of the bulk
flow (see Tennekes & Lumley, 1972, for example.) The ensemble averaged fluid velocity and
temperature are denoted by u and T , while u′ and T ′ are the corresponding turbulent fluc-
tuations about the mean. We motivate our scalings by considering typical two dimensional
ocean internal waves, but the analysis can also be applied to any other system with the
same ordering of length-scales (including the axisymmetric flow observed in the laboratory
experiments discussed in §3-4). Non-linear internal waves are typically observed to have
horizontal wavelengths λ ≈ 10 − 100m, vertical amplitudes a ≈ 1 − 10m and frequencies
ω = O(0.005)Hz. The length-scales of variation of the internal wave flow are much larger
than the thermal boundary layer thickness (typically δ = 0.1 − 1 cm in the ocean) and so
we can make some simplifications to our model under the assumption that δ ≪ a, λ. Work-
ing in a reference frame where the air-water interface is fixed (see figure 2), we expect no
normal flow at the free surface so that the vertical velocity w = 0 at z = 0. We can then
approximate the near surface vertical velocity by the leading term in a Taylor expansion

w = z
∂w

∂z

∣

∣

∣

∣

z=0

+ O
(

aω
δ2

a2

)

. (9)

Continuity requires that the local upwelling be accompanied by a horizontally diverging
flow. We can think of the internal waves generating a local straining flow about some point
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within the thermal boundary layer, so that

w = −αz, u = α1x, v = α2y, α = α1 + α2 (10)

where α = O (ω) is the vertical strain rate, (x, y) are the horizontal co-ordinates relative
to the centre of the divergence, and (u, v) are the corresponding horizontal components of
velocity. We expect horizontal variations to scale with the flow wavelength λ and vertical
variations to scale with the boundary layer thickness δ, so that ∂x, ∂y ≪ ∂z and we can
neglect horizontal diffusion compared to vertical diffusion across the boundary layer. If
Q is independent of x and y, we expect horizontal variations in temperature to be small
compared to the bulk skin temperature difference, so that u · ∇T ≈ w∂zT . Finally, we
assume that turbulence is suppressed near to the surface, so that u′T ′ ≈ 0 in the upper
laminar layer −δ < z < 0. The heat equation (8) then simplifies to give

∂T

∂t
− αz

∂T

∂z
= κ

∂2T

∂z2
. (11)

For near surface flow generated by internal waves we expect the time dependent term to be
comparable to the vertical advection (since α < ω for linear internal waves). This possibility
was discussed in more detail by Osborne (1965), with the resulting solutions exhibiting a
wave-like propagation of the temperature signal through the boundary layer. We will focus
on the quasi-steady case relevant to our laboratory experiments, so that (11) reduces to the
ordinary differential equation

−αz
∂T

∂z
= κ

∂2T

∂z2
. (12)

This is subject to boundary conditions

T = TB at z = −δ, −ρcpκ
∂T

∂z
= Q at z = 0, (13)

so that the temperature matches the bulk temperature at the top of the mixed layer and
is subject to an imposed heat flux at the atmosphere-ocean interface. The system (12–13)
has solution

T (z) − TB =
Q

ρcpκ

∫ z

−δ
exp

(

−αξ2

2κ

)

dξ, (14)

so that we observe a bulk–skin temperature difference

TS − TB =
Q

ρcpκ

∫ 0

−δ
exp

(

−αξ2

2κ

)

dξ. (15)

As α varies we obtain different asymptotic limits. In the limit of no imposed flow (α = 0)
we recover the linear conduction temperature difference

TS − TB =
Qδ

ρcpκ
. (16)

For flows with large strain rate,
αδ2

κ
≫ 1, (17)
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we obtain a temperature difference

TS − TB =
Q

ρcp

√

π

2κα
. (18)

We note that the equation (18) closely resembles the prediction of Leighton et al. (2003),
who used a surface straining model to describe the static free convection boundary layer
(with α = 0 in our notation.) The Leighton et al. (2003) model assumes that, for free
convection, the thermal boundary layer is set up by a balance between vertical diffusion
and a flow with strain rate γ, generated by turbulence in the interior. Leighton et al.

(2003) suggest that their result can also be generalised for other sources of turbulence by a
suitable choice of the effective strain rate γ. It is interesting to note that the large strain
rate limit (18) of the Osborne (1965) theory agrees with the Leighton et al. (2003) result if
we take γ = α, corresponding to the imposed vertical advection dominating that generated
by convective turbulence.

2.3 Non-dimensional formulation

We can also describe the bulk-skin temperature difference in non-dimensional form, in order
to identify the different dynamical balances that can be observed in the thermal boundary
layer, and ascertain when each balance can be applied. Scaling vertical lengths with δ,
temperature differences with the conductive temperature difference Qδ/ρcpκ, and time with
1/ω, we define non-dimensional variables ẑ = z/δ, θ = ρcpκ(T − TB)/Qδ and t̂ = ωt . The
governing equation (11) becomes

StPe
∂θ

∂t̂
− Pe ẑ

∂θ

∂ẑ
=

∂2θ

∂ẑ2
, (19)

where the Péclet number

Pe =
αδ2

κ
, (20)

measures the importance of advection of heat relative to diffusion, and the Strouhal number,

St =
ω

α
, (21)

is the dimensionless frequency of the wave motion. The non-dimensional forms of the
boundary conditions (13) are

θ = 0 at ẑ = −1, and
∂θ

∂ẑ
= −1 at ẑ = 0. (22)

We immediately see from (19) that we can only neglect the unsteady term if St ≪ 1 and we
have a low frequency motion. Linear internal and surface waves have α < ω, so that St > 1
and the unsteady term must be retained.

For steady flows, the Osborne (1965) prediction (15) can be rewritten as

1

Nu
=

√

π

2

erf
[

(Pe/2)1/2
]

Pe1/2
, (23)
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where the Nusselt number

Nu =
Qδ

ρcpκ (TS − TB)
, (24)

represents the ratio of total heat flux compared to the conducted heat flux for the static
(α = 0) boundary layer. We have used the error function

erf [x] =
2√
π

∫ x

0

exp
(

−u2
)

du (25)

here. For large Péclet number (23) reduces to

1

Nu
∼

√

π

2Pe
as Pe → ∞, (26)

so that the limit (18) is valid whenever Pe = αδ2/κ ≫ 1. For small Péclet number (Pe ≪ 1)
we have

1

Nu
= 1 − Pe

6
+ O

(

Pe2
)

. (27)

We will see that this limit has important consequences later on.
In §3 and §4 we discuss an experimental investigation of the dynamics described by this

theory.

3 Experimental Procedure

A laboratory experiment was used to investigate the structure of the thermal boundary
layer below a free surface. The experimental set up is shown in figures 3 and 4 A laminar
jet was created at the base of an inner tank by pumping fluid through a vertical nozzle. The
nozzle was covered by a sponge to generate a diffuse source of momentum, thus allowing
the generation of small strain rates close to the free surface. The pump flow rate was varied
between 0.12 cm3 s−1 ≤ F ≤ 1.14 cm3 s−1, in order to alter the input momentum flux and
hence the strain rate close to the surface. The jet decelerates as it approaches the free
surface, so that there is an axisymmetric straining flow close to the surface (indicated by
the blue arrows in figure 4). The fluid then spreads radially, creating a surface divergence,
before overflowing into an outer tank where fluid is returned to the pump via a sink. The
outer tank has insulated side walls and bottom so that the dominant heat loss is across the
air–water interface.

The bulk temperature was measured with a resolution of 0.02◦C by a digital HOBO data
logging thermometer placed deep in the tank. A PME microscale temperature–conductivity
(T-C) probe (incorporating a Thermometrics FP07 thermistor) was lowered into the tank
from above in order to measure the variation of temperature with depth and enable es-
timation of the skin layer thickness δ. The probe tip was aligned to pierce the interface
close to the centre of the upwelling jet. Temperature profile measurements were taken over
the upper 5 cm of the tank interior, with one sample taken every 0.001 cm. Downward
sampling was used so that the probe tip could take measurements before the probe casing
influenced the upwelling flow. Several measurements were also made with an upward mov-
ing U–shaped probe for the static thermal boundary layer case (α = 0), and no qualitative
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Figure 3: Photograph of the experimental apparatus.
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Figure 4: Schematic diagram illustrating the experimental set-up. Fluid is injected via a
jet at the base of the inner tank to create a near surface flow divergence, as indicated by
the blue arrows.
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Figure 5: Instantaneous images of the measured temperature, in ◦C, at the free surface,
for (a) pure free convection and (b) an upwelling jet of volume flux F = 1.14 cm3 s−1.
Each image shows a region of the surface 15 cm × 12 cm, with the 1 cm × 1 cm averaging
region indicated by a black outline. The microscale-temperature probe shows in black at the
centre of the image, shortly before it is lowered into the water. Convection roll structures are
observed in the free convective case (a) with cold regions above local regions of downwelling.
The relatively warm patch in the centre of frame (b) corresponds to the thermal signature
of the upwelling jet. Note that the temperature scales differ for each image, since the bulk
temperature TB differs between the images.

difference in temperature profiles was observed. This suggests that the vertical motion of
the probe tip does not have a strong influence on the thermal boundary layer, as similar
profiles are observed for both an upward and downward moving probe. The analogue out-
put of the microscale conductivity probes was subject to some contamination by electrical
noise generated within the laboratory. This noise implies an accuracy of only 0.1◦C in the
temperature profile measurements.

The free surface temperature was measured to an accuracy of 0.001◦C and at a sample
rate of 20Hz with an infra-red thermal imaging camera, mounted 60cm above the water
surface with a viewing angle of 26◦ to the vertical. In particular, the free surface temperature
was determined by a spatial average over a 1 cm2 square box centred on the T-C probe tip,
and then a further time average over 5 seconds worth of images. Single images of the free
surface temperature variation are shown in figure 5, both with and without an imposed
flow, with the measurement region marked by a black outline.

The velocity field was measured using a particle image velocimetry technique, which
is briefly described below. The tank was seeded with 10µm diameter glass beads of near
neutral buoyancy, which were illuminated by a vertical laser sheet passing through the
centre-plane of the jet. The particles effectively behave as passive tracers for the flow
speeds of O(1 cm/s) observed in the jet. The particle displacements between a pair of
consecutive camera frames are then correlated to estimate the velocity components in the
plane of illumination. An interval of 0.06 s between frames was found to give best resolution
of the flow. For each flow rate, a sequence of 155 image pairs was taken at a sampling rate
of 4Hz. This sequence was then time averaged and a subsequent mean vertical velocity
profile w(z) was then calculated for the centre of the jet. For each value of z a horizontal
average of w was taken across a cross-section of width 2 cm about the centreline of the jet.
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An integral heat budget was used to estimate the total heat flux across the air-water
interface. If we assume negligible heat loss across the well insulated side walls and bottom of
the tank then most of the heat loss has to occur across the free surface. Turbulent convection
maintains the interior of the tank at a uniform temperature, except in the small thermal
boundary layer over the upper centimetre of depth. The order 1 cm surface boundary layer
comprises less than 5% of the 30 cm depth of the tank, and so we neglect the small effect
of departure from the bulk temperature in this thermal boundary layer. Balancing the rate
of change of heat within the tank to the heat flux across the free surface, we obtain

ρcp
d

dt
(VTB) = AQ, (28)

where V is the volume of water in the tank, and A is the area of the free surface. Note that
we have assumed that the water-air heat flux Q is relatively uniformly distributed across
the free surface. The integral heat budget (28) gives an estimate of the water–air heat flux
Q from the temporal variation of the bulk temperature measured with the HOBO digital
thermometer. The time rate of change of TB was calculated by applying a 600 second box
filter to the temperature record to remove noise, and then using the difference in smoothed
temperature 300 seconds before and 300 seconds after each measurement to calculate the
derivative. This provided a smooth variation of heat flux in time.

The above measurements were taken for different strain rates (i.e different flow rates
F ) and also different bulk temperatures. For each experiment, the following procedure was
adopted. One hundred thermal camera images were taken over a period of 5 seconds, before
a temperature–depth profile was taken with the T-C probe moving downward through the
free surface. The heat flux and bulk temperature values were recorded continuously during
several experiments. Particle image velocimetry measurements were taken for each flow
rate for a range of bulk temperatures. It was found that there was negligible change in
the near surface strain rate α with bulk temperature, suggesting that the dynamical effect
of convection is relatively weak compared to that of the imposed flow of the jet. A single
average value of α was therefore used for each flow rate in the subsequent calculations.

4 Experimental results

A series of measurements were taken to assess the accuracy of the method and explore how
an applied upwelling flow alters the thermal boundary layer structure. In §4.1 we present
measurements of the thermal boundary layer for pure convection with no imposed flow in
order to provide a consistency check on our results. We then move on to consider the effects
of an imposed upwelling flow in §4.2, before giving a qualitative discussion of the effects of
downwelling flow and the presence of surfactants in §4.3.

4.1 Convective boundary layer with no imposed flow

The experimental procedure was first tested by taking measurements of a purely convec-
tive thermal boundary layer as a consistency check with previous studies (Howard, 1966;
Katsaros et al., 1977). Figure 6 shows the raw output from a typical measured sub-surface
temperature profile. The persistent variation of 0.1◦C might be explained in part by elec-
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Figure 6: Variation in sub-surface temperature in ◦C with depth in cm. The measured
temperature signal at each point is shown by symbols, with blue cross symbols denoting
measurements in air, green star symbols denoting measurements in the skin layer and red dot
symbols denoting measurements in the interior as determined by an automated algorithm
(see text). The independent thermal camera measurement of the surface temperature is
shown by a dashed blue line and the thermometer measurement of the bulk temperature is
shown by a dash-dotted pink line. The solid black curve shows the profile predicted by the
Howard (1966) convective boundary layer theory using ζ = −

√
πz/4δc.
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trical noise in the laboratory contaminating the signal.
An automated algorithm was used to determine the vertical position of the air–water

interface and also to determine the depth of the skin layer. Measurements in approximately
the upper 0.3 cm have been taken in air (blue cross symbols) and are shown purely to
illustrate the surface detection algorithm (the instrument does not measure temperature
accurately in air.) The transition from readings taken in air to readings taken in water
was characterised by a region of large vertical gradient in the temperature signal, as the
probe pierced the interface. The position of the air-water interface was therefore estimated
by taking the vertical co-ordinate of the tenth data point after the maximum value of
dT/dz was attained. This algorithm systematically under-predicts the surface temperature
compared to the thermal camera measurement, due in part to the effects of partial immersion
of the probe tip and surface tension dominated deformation of the interface. However,
the temperature profile reaches the same value as the thermal camera estimate of surface
temperature within 0.05 cm (which is, perhaps not coincidentally, about the diameter of
the glass encased thermistor). Hence, the disagreement in surface temperature between
the temperature profile and the thermal camera has only a small effect on the inferred
values of the thermal boundary layer thickness δ = O(1 cm). The remaining data points
in the temperature profile were then inferred to be in the skin layer (green star symbols)
if the observed temperature deviated from the average bulk temperature by more than 5%
of the bulk–skin temperature difference (where the bulk temperature was taken from the
temperature profile at 4 cm depth.) The data points from the remainder of the profile in
the interior are plotted using red circles. This algorithm enabled an estimate of the thermal
boundary layer thickness δ by computing the depth of the inferred skin layer. Typically
observed values lie in the range 0.4 cm ≤ δ ≤ 1.5 cm, as expected, with thinner boundary
layers observed for a larger surface heat flux. The theoretical solution (2) due to Howard
(1966) is also plotted in figure 6 (solid black curve), and shows good agreement with the
observed shape of the temperature profile. Note that we have estimated the conductive
lengthscale δc using (7) here.

Figure 7 shows a comparison of the observed bulk–skin temperature difference TB − TS

with the prediction (6) made by applying the ‘4/3rds’ heat flux law. We observe a linear
relationship between the observed and predicted bulk-skin temperature differences, with
equation (6) under-predicting the observed bulk-skin temperature difference by approxi-
mately 0.3◦C. The cause of this offset was not immediately clear, but is of a consistent order
of magnitude to the bulk-skin temperature differences that can be generated by Marangoni
convection (Katsaros, 1980). The surface may also be affected by contamination with sur-
factants either contained within the tap water used, or those that have settled onto the
surface from the atmosphere. We note that some intrinsic scatter in the data is to be ex-
pected due to turbulent flow fluctuations. The convection theory described in §2.1 is based
on a statistically steady state approximation, with the governing equations averaged both
in time and horizontal space. This means that some time-dependent and spatial variation is
expected between individual temperature profiles (in particular we expect some horizontal
variation in temperature due to the structure of the convection cells). The above results and
their agreement with previous theories give us confidence that our experimental techniques
are adequate before moving on to consider the effect of an upwelling flow on the thermal
boundary layer dynamics.
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Figure 7: Comparison of the observed bulk–skin temperature (measured using ther-
mal camera and digital thermometer) with the theoretical prediction TB − TS =

A−3/4 (Q/ρcpκ)3/4 (κν/βg)1/4 given by (6). The red curve shows a linear fit to the rela-
tionship between measured values ∆Tm and predicted values ∆Tp. Typical error bars are
shown by the cross in the top left corner.
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Figure 8: Time-averaged velocity vectors calculated from particle image velocimetry mea-
surements for a laminar momentum jet with volume flux F = 1.14 cm3 s−1. The vertical jet
exerts a local upwelling between x = −3.2 cm and x = −1.2 cm, generating a diverging flow
near to the surface. The mean vertical velocity is determined by taking a cross sectional
average at each height z within the red rectangle.

4.2 Convective boundary layer with imposed near surface divergence

A near surface divergence was generated by the local upwelling flow produced by the diffuse
vertical jet described in §3. The jet was of laminar character, and remained relatively
steady over the period of an experiment, with occasional intermittent bursts of unsteadiness.
Figure 8 shows a plot of the time averaged flow vectors measured using particle image
velocimetry for a jet with volume flux F = 1.14 cm3 s−1. The jet has a confined core flowing
upwards with weak entrainment of the exterior fluid. The flow diverges radially as the free
surface is approached. Figure 9 shows a plot of the average vertical velocity w(z) near the
centre of the jet, calculated using the methods described in §3. Directly above the source
(z ∼ −20 cm) we observe an increase in vertical velocity - this effect is a consequence of
the plane of measurement not coinciding precisely with the centre of the jet. Closer to the
surface we observe the expected vertical deceleration, with the vertical velocity tending to
zero as we approach the free surface. The variation of vertical velocity w is approximately
linear in z over the upper 2.5 cm of the profile. This lengthscale exceeds the typical thickness
of the thermal boundary layer δ = O(1 cm), so that we are in a regime of constant strain
rate within the thermal boundary layer. We estimate the constant strain rate α by applying
a linear finite difference across the upper 2 cm of the profile, so that

α =
w(z = 0cm) − w(z = −2 cm)

2 cm
. (29)

Different values of α were obtained by varying the jet flow rate - these are are summarised
in table 1.

The imposed diverging flow field has a significant effect on the temperatures observed
both at and below the free surface. Figure 5 shows an example of the instantaneous free sur-
face temperature measured with the infra-red thermal camera, for cases with and without
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Figure 9: Typical variation of mean vertical velocity w with depth z, for a jet with volume
flux F = 1.14 cm3 s−1. The velocity variation is linear close to the surface, so that the strain
rate is approximately constant over the width of the thermal boundary layer δ. A typical
reference value of δ is marked by red dashed lines for comparison.

Flow rate F (cm3 s−1) 0.12 0.19 0.60 1.14

Strain rate α (s−1) 0.043 0.057 0.118 0.158

Table 1: Values of near surface strain rate α = ∂w/∂z estimated from particle image
velocimetry measurements.
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Figure 10: Variation of sub-surface temperature from bulk temperature, T −TB, with depth
z, for different values of the applied strain rate α = ∂w/∂z. As α, and hence the vertical
advection, increases the boundary layer becomes thinner, and the bulk skin temperature
difference is reduced.

an imposed flow. With no imposed flow (figure 5(a)) we observe regions of warm temper-
ature bounded by bands of colder fluid. These patches are due to convection cells, with
upwelling creating a warm region at their centre and downwelling at the cell boundaries
creating a colder surface temperature. These structures bear a striking resemblance with
those observed in the DNS of Leighton et al. (2003) (see their figure 2), and provide a
qualitative indication that vertical sub-surface flow influences the surface temperature.

The addition of a vertical jet flow produces an obvious change in the free surface temper-
ature pattern, as seen in figure 5(b). Upwelling of heat from the interior leads to a localised
patch of warmer surface temperature above the centre of the jet, as compared to the surface
temperature in the far field. The convection cell structure appears to be suppressed within
this patch. This may reflect the fact that the jet creates a relatively large Péclet number
in the boundary layer (Pe = αδ2/κ ≈ 10 − 100). The convection cell structures are set
up by a diffusive balance across an upper conductive layer. For large Péclet number the
advection of heat by the jet dominates over diffusion and so the convection cell structures
are suppressed. A quantitative analysis of the thermal boundary layer is discussed below.

The variation in surface temperature is accompanied by a corresponding change to the
sub-surface thermal boundary layer. Figure 10 shows the measured temperature variation
with depth for four different applied strain rates. The measurements suggest that the bulk-
skin temperature difference is reduced as the strain rate increases. This is qualitatively
consistent with the Osborne (1965) theory, with the surface temperature being locally larger
due to vertical advection of warm fluid from the interior. We also note a reduction in the
measured boundary layer thickness δ as we increase the strain rate α, with the temperature
variation confined to a narrower region close to the surface.
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Figure 11: Comparison of observed bulk-skin temperature difference in ◦C, to the Osborne
(1965) theoretical prediction (15). The observed surface temperature is measured using the
thermal imaging camera, and the bulk temperature is measured by the digital thermometer.
Also shown are the lines ∆Tmeasured = ∆Tpredicted and ∆Tmeasured = ∆Tpredicted +0.5◦C for
reference. The cross in the top left corner shows the typical scale of errors inferred from
experimental measurement precision.

In order to provide a quantitative comparison with the Osborne (1965) theory, the
measured values of α, δ and Q were used to predict a value of the bulk-skin temperature
difference for each experiment according to (15). Figure 11 shows the predicted bulk-skin
temperature difference compared to the value measured using the infra-red camera and
digital thermometer readings for each individual experiment. The results follow a linear
trend, with the Osborne (1965) prediction (15) producing a consistent under-estimate of
the observed bulk-skin temperature difference by approximately 0.5◦C. We again note that
we expect some intrinsic scatter in the data as a result of time dependent turbulent flow
fluctuations. The Osborne (1965) theory is derived for a statistically steady state, described
by a surface renewal type theory for the convective boundary layer. This means that some
time-dependent variation is expected between individual temperature profiles as filaments
of cold fluid detach from the boundary layer and mix downwards. The level of scatter is also
of a similar magnitude to the error estimates provided by a compound of the measurement
precision of each of the instruments, as shown by the error bars in figure 11. The cause of
the consistent offset of 0.5◦C was again undetermined, but may also be consistent with the
effects of Marangoni convection or surface contamination.

An alternative comparison with the Osborne (1965) theory is to consider the measured
variation of the non-dimensional Nusselt number Nu with the Péclet number Pe, as shown
on logarithmic scales in figure 12. The data appear to follow the scaling of the large Péclet
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Figure 12: Variation of inverse Nusselt number 1/Nu = (TB−TS)ρcpκ/Qδ with Péclet num-
ber Pe = αδ2/κ, plotted on logarithmic scales. The non-dimensional form of the Osborne
(1965) prediction (23) is plotted with a solid line for comparison.

number limit, with
1

Nu
∼

√

π

2
Pe−1/2, as Pe → ∞. (30)

This suggests that the Osborne (1965) theory provides an effective description of large
Péclet number flow in the laboratory.

4.3 Discussion of surface convergence and surfactant effects

Attempts were made to perform experiments with a converging flow generated close to the
surface. In order to generate a converging flow the direction of the pump was reversed
so as to create a sink flow in the inner tank. In addition the sink nozzle was moved to
within 3 cm of the surface to allow large strain rates to be observed close to the interface.
Figure 13 shows the surface temperature measured for a strong sink flow of volume flux
F = 90 cm3 s−1. This set up did not allow detailed quantitative measurements, as we could
not obtain a constant strain rate α over the entire width of the thermal boundary layer.
However, a reduction in surface temperature of approximately 0.2◦C was observed in the
neighbourhood of the draining sink flow.

Ten experiments were also performed with an insoluble surfactant added to the water
in order to investigate the effects of contamination by a surface film. 250µl of cholesterol
was added to the surface of the tank, the tank was stirred and left to settle for 30 minutes.
Figure 14 shows a comparison of predicted and observed values of the bulk-skin temperature
difference both without and with the addition of artificial surfactant. The addition of
surfactant generates a reduction in the observed bulk-skin temperature difference, so that
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Figure 13: Surface temperature measured in the presence of a strong sink flow of volume
flux F = 90 cm3 s−1. The cold (dark) region is observed above regions of near-surface
convergence generated by the sink flow draining the container. The cause of the warm
patch close to the sink is undetermined, but suggests that horizontal advection may be
important in this flow.
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the skin temperature is warmer than we would find without the presence of surfactant. This
increase in surface temperature is somewhat surprising, appearing to oppose the usually
quoted effect of a surface film (e.g. McKenna & McGillis, 2004). The observed strain rate
appears to be significantly reduced by the addition of surfactant, with a change in strain
rate from α = 0.43 s−1 to α = 0.27 s−1. This is consistent with the expected effect of adding
surfactant, as the increase in interfacial tension generates a stress acting to oppose the
radially diverging flow and hence reduce near surface fluid velocity (McKenna & McGillis,
2004).

5 Discussion

The laboratory results presented above demonstrate that an imposed near surface diverging
flow can generate local variations in the temperature at the free surface. The Osborne (1965)
model effectively describes the trends observed in the laboratory experiments at large Péclet
number, although it appears to under-predict the observed bulk-skin temperature difference
by an offset of approximately 0.5◦C. In a large Péclet number regime, the Osborne (1965)
theoretical prediction (15) reduces to the limit (18). This limit has the interesting feature
that the bulk-skin temperature difference is independent of the boundary layer thickness.
The vertical heat transport from the interior is dominated by advection, and so the free
surface temperature is controlled by a steady-state balance between vertical advection of
heat into the boundary layer and loss of heat into the atmosphere. The thermal boundary
layer then adjusts its thickness so that it supplies the necessary conducted heat flux at the
air-water interface.

The cause of the 0.5◦C offset is undetermined, but could be due to processes such as
Marangoni-Bénard convection. Further investigation is required in order to explain this
behaviour.

We conclude with a discussion of the application to oceanic flows. The laboratory
experiments principally explored a regime of large Péclet number, where the advection
of heat dominates diffusion over most of the thermal boundary layer. We expect ocean
internal waves to produce flows with much smaller Péclet numbers, since oceanic turbulence
generated by a surface wind stress acts to reduce the thermal boundary layer thickness. If we
take a typical strain rate of α = 0.002 s−1 (Gasparovic et al., 1988), a thermal conductivity
κ ≈ 0.001 cm2 s−1 and an ocean skin layer thickness of δ ≈ 0.1 cm (Saunders, 1967) we
obtain Pe = 0.02. In the small Péclet number regime we can no longer apply the limit (18),
with diffusion playing a more important role in the thermodynamical balance close to the
air-water interface. We then expect the bulk-skin temperature difference to have a strong
dependence on the thermal boundary layer thickness. Attaining a small Péclet number
regime was beyond the scope of the current experimental set up, and so further experimental
work is needed in order to explore this limit. In addition, internal waves are an inherently
unsteady phenomenon. As previously discussed, the Strouhal number St = ω/α > 1, and
so we cannot use asymptotic arguments to neglect time-dependent variation in the heat
equation (8). Osborne (1965) treats linearised time-dependent solutions in three different
scenarios, corresponding to different hypotheses as to how the skin layer thickness and bulk
temperature respond to the action of waves. Further work is required to determine which,
if any, of these cases is appropriate for application to internal wave modulation of the sea
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surface temperature.
Having determined that localised flow structures can influence temperature at an air-

water interface, it is natural to ask whether such flows have significant impact on ocean to
atmosphere heat and gas exchange. For the case of internal waves we present a simplified
model calculation, under the (slightly unrealistic) assumption that the steady Osborne
(1965) result can be applied in a quasi-steady fashion. We expect internal waves to generate
alternating periods of diverging and converging flow near to the free surface. As a simplified
model, we pose that the internal waves generate a time-dependent strain α = α0 cos ωt
near to the ocean free surface. If we assume that the boundary layer evolves in a quasi-
steady fashion, with constant skin layer thickness δ, we can apply the Osborne (1965)
result (15) to predict the bulk-skin temperature difference at each time t. The equation (15)
is highly asymmetric as we vary α between positive and negative values, and so we might
expect a significant difference between the time averaged skin temperature in the presence
of waves, and that obtained in a calm ocean with α = 0. Using a typical ocean skin layer
thickness of δ = 0.1 cm, ocean–atmosphere heat flux of Q = 100W m−2 and internal wave
strain rate of α0 = 0.002 s−1 we obtain a time averaged bulk-skin temperature difference
of ∆T = 0.1671◦C. Interestingly, this does not differ significantly from the static bulk-skin
temperature difference of ∆T = 0.1667◦C for α = 0. This result is initially surprising, but
can be reconciled by considering the small Pe expansion of the non-dimensional result (23).
Recall, that for Pe ≪ 1, (27) gives

1

Nu
= 1 − Pe

6
+ O

(

Pe2
)

. (31)

This implies that small Péclet number flows can only induce small changes in the bulk-skin
temperature difference, with the change from the static bulk-skin temperature difference
only at O (Pe). The Péclet number relevant to our internal wave example is Pe = 0.02, and
so the percentage change to the bulk-skin temperature difference is correspondingly small
(in fact the time average temperature difference is O

(

Pe2
)

in our case, as the linear term
time averages to zero.) The small Péclet number expansion (31) may also have important
consequences for the parameterisation of the skin temperature in climate models. We can
use (31) to asymptotically bound the change in skin temperature induced by any small
Péclet number flow satisfying the assumptions of the steady Osborne (1965) theory. This
suggests that small Péclet number flows will not generate significant changes in the skin
temperature via the skin layer straining mechanism, and as a result will not have a significant
impact on the ocean-atmosphere heat transfer. In particular, internal waves cannot generate
large changes in sea surface temperature, as compared to the static bulk-skin temperature
difference. This may also explain our difficulties in quantifying the effects of small Péclet
number flows in the laboratory, as the resulting change in bulk-skin temperature difference
is smaller than the resolution of our experimental equipment.

We can also use our results to infer consequences for transfer of dissolved gases between
ocean and atmosphere. The non-dimensional representation presented in §2.3 immediately
generalises to transport of any other scalar quantity by replacing temperature with gas
concentration, thermal diffusivity κ with a gas diffusivity D and defining a corresponding
gas flux to replace the heat flux Q. The behaviour of the surface gas concentration is then
determined by a Péclet number based on gas diffusivity, PeD = αδ2/D. If gas diffusion is
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significantly slower than thermal diffusion, D ≪ κ, this raises the interesting possibility of
having a small thermal Péclet number at the same time as a large gas Péclet number. This
is the case for diffusion of dissolved carbon dioxide, with D/κ ≈ 0.01 (Wanninkhof, 1992).
Hence, although internal waves have a small effect on sea surface temperature, they may
have important consequences for gas transfer. Solutions of the time dependent advection-
diffusion equation (19) therefore warrant further consideration so that we can accurately
quantify the effects of internal waves on ocean-atmosphere gas transfer.
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Abstract

This study aims to answer the question: Are stably stratified

boundary layer flows marginally unstable? Using the Taylor Gold-

stein equation, we analyse the linear stability of a number of observed

mean flows in stably stratified boundary layers. We find that although

Kelvin Helmholtz instability may occur the growth rates of unstable

modes are small compared to the time scales of fluctuation in the flow

and in all cases where unstable or stable modes are found a change in

velocity shear of no more than 20% is required to stabilise or desta-

bilise the flow, respectively. The implications of these results and

potential for further studies are discussed.

1 Introduction

In his book Buoyancy Effect in Fluids J.S. Turner (1973) makes the follow-

ing conjecture regarding gravity driven flows down a uniform slope: ‘While

turbulence is present the drag on the layers increases and the velocity falls,

but when it is suppressed the flow is accelerated again by gravity’. The mean
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flow is consequently self-controlled close to a state at which turbulence sets

in and is one of marginal stability. This study presents evidence in support of

Turner’s conjecture that boundary layer flows are maintained in a marginal

state of stability, which we shall assume is that in which small disturbances

to the mean flow have zero growth rate.

Our method for analysing the stability of such flows shall be to use the

Taylor-Goldstein equation

∂2φ

∂ẑ2
+

(

N̂2

(U − C)2
− k2 −

∂2U
∂ẑ2

U − C

)

φ = 0 (1)

where the perturbation streamfunction is ψ(x̂, ẑ, t̂) = φ(ẑ)e[ik(x̂−Ct̂)] with

wave number k, phase speed C = Cr + iCi and mean velocity U and the

bouncy frequency N̂2 = −gρz/ρ (variables with a hat are in their dimensional

form and will later be nondimensionalised). The Taylor-Goldstein equation is

derived from the mass and momentum conservation equations for a stratified

fluid without rotation and describes the evolution of an initial disturbance to

the steady, inviscid and unidirectional stratified flow under a velocity shear.

In using (1) we implicitly disregard the stresses and eddy diffusivities asso-

ciated with turbulent motion. The common dimensionless number used to

characterise the flow is the Richardson number Ri = N̂2/(Uz)
2.

The canonical theorem of Miles and Howard (Miles, 1961) (Howard, 1961)

shows, using 1, that steady, inviscid and unidirectional flows with Richardson

numbers above a quarter everywhere in the flow are stable to small pertur-

bations (Drazin and Reid, 1981). Although it is commonly espoused that

flows are unstable below this critical value it is in fact (theoretically at least)

not the case. For particular flows with U and ρ prescribed, Hazel (1972) has

shown that when the boundary of a stratified flow is not at infinity the insta-

144



bility can be inhibited and the critical value of minimum Richardson number

(called J) is reduced. As is shown in figure (1) as the distance from the

boundary increases the region where growing waves exist and perturbations

can grow decreases. Indeed where the boundaries are within 1.5 H (H being

the typical height scale) of the shear the flow is stable for Richardson numbers

above 0.125 and almost always for 1.25H. Indeed, even if the stratification

is increased (increasing Ri) the stability is not necessarily increased, Thorpe

(1969) and Miles (1963) both show cases where the presence or increase in

stratification can reduce the stability of a flow. Such examples suggest that

the stability of a shear flow can not accurately be described by the Richard-

son number at an isolated point alone but solutions to the Taylor-Goldstein

equation involving representation of U and ρ̂ as functions of ẑ over the entire

flow should be considered.

The body of evidence in support of Turner’s conjecture is small and not

yet convincing. Indeed the original statements are made with reference to

the laboratory studies of Mittendorf (1961) who showed how the Kelvin-

Helmholtz mechanism reduces the shear leading to a maintenance of a gravity

driven flow in a state of marginal stability. Thorpe and Hall discussed such

a concept in their study of a wind driven flow in Loch Ness, Scotland (1977).

Small perturbations were shown to be likely to grow if the Richardson number

were increased from that observed by only 10% (i.e. an increase in the mean

shear of only 5%). Merrill (1977) examined the linear stability of an airflow

near the ground and although he did not estimate whether the flow was

‘marginally’ unstable he found that for a boundary flow with J = 0.15, the

growth rates of the most unstable modes were small. Nielsen (1991) looked

at instability on a frontal inversion in the Atmosphere and although unstable

modes where not found for the observed profiles, he was able to extrapolate
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Figure 1: Stability boundaries for ‘tanh’ profiles at nondimensional distances

marked. The vertical axis J represents the minimum Richardson number

(found at z = 0) and the dimensionless wavenumber α = kH for some

typical length H. (Taken from Hazel (1972)).

146



from unstable modes found by reducing the Richardson number of the flow

and found that the observed profiles were at or very near a state of marginal

stability. As in this study numerical problem often arise when such stability

analysis is conducted on actual profiles of velocity and density. A recent

study by Thorpe and Ozen (2007) (hereafter TO07) has asked the question

of whether boundary flows are marginally stable. They look at a cascading

flow in Lake Geneva and find that both a functional fit to the data and the

data itself in a canonical case, are unstable but only marginally so.

Boundary currents and how they influence the dynamics of the Ocean and

Atmosphere is currently the subject of great interest in geophysical research.

Two examples of stably stratified boundary currents were mixing and tur-

bulence are known to be of great importance in the Ocean are wind driven

flows in the presence of surface heating and gravity driven boundary currents

that feed dense water into the major ocean basins. Correctly describing such

flows and the instabilities that can arise from them is extremely important

for numerical models of the Climate System.

The consequences of boundary flows being generally in a state of marginal

stability (if that can be shown) is important from the point of view of nu-

merical models. It is customary in many numerical models, to mix and

entrain fluid in a stratified flow when the Richardson number drops below

the canonical 1/4 value or to adopt an empirical entrainment coefficient. As

we have discussed, boundaries may act to stabilise the flow despite such a

shear existing. It would preferential to use linear stability analysis, rather

than simply the Ri condition to assess the accuracy, and thus constrain, a

numerical model and test whether numerically predicted flows are, like those

observed, close to marginal stability.

The following section of this report, Section (2), establishes the theoretical
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framework under which we will conduct our stability analysis. Section (3)

discusses the data collected from a cascading flow in Lake Geneva and section

(4) describes the results of our linear stability theory. A discussion of the

implications of these results and ongoing research are discussed in section

(5).

2 Nondimensionalisation and Boundary Con-

ditions

We follow the same nondimensionalisation as that of TO07 where h is defined

by the thickness of the current, z = ẑ/h, u = U/Umax, c = Ĉ/Umax, g∆ is

the reduced gravity (∆ = (ρ(z = 0) − ρ(z = 1))/(ρ(z = 0) + ρ(z = 1)))

and Umax is the maximum velocity difference in the flow (see Figure (2)) and

N2 = g∆N̂2/h and the Taylor-Goldstein equation (1) becomes

∂2φ

∂z2
+

(

N2

Fr2(u− c)2
− α2 −

∂2u
∂z2

u− c

)

φ = 0. (2)

where the Froude number Fr = Umax/
√
g∆h

The data we will use to assess the linear stability of boundary layer flows

will, in the majority of cases, be limited to the region of the boundary flow

itself. In previous treatments of flow using the Taylor-Goldstein equation it

is assumed that there is some point in the flow where a solid boundary exists

such that φ = 0. In cases where we have only data in the flow region it is more

preferable to assign some mean stratification and flow to the region distant

from the flow or interior (i.e. for z > 1). For our purposes we will assume the

interior has the following properties: the mean flow (u,v) and density (ρ) are

constant in x, y, z and t, the mean flow is hydrostatic such that ∂p
∂z

= −ρg and
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Figure 2: A schematic showing how the scales Umax, h, the perturbation

streamfunction Ψ, potential flow ϕ and free surface displacement in the

matching region η are defined for a typical flow profile.
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it is irrotational. In the upper region (z > 1) there exists a potential flow ϕ =

Aek(z−1)eiα(x−ct) which will be matched to the perturbation streamfunction

close to z = 1 where the free surface displacement is η = aeiα(x−ct). Here A

and a are unknown constants. Assuming the flow is two dimensional (for the

time being) we write a linearized equation for η (eliminating u′ ∂η
∂x

terms) at

the interface between the two regions (ẑ = 1 + η)

∂η

∂t
+ u

∂η

∂x
= w (3)

where w = w′ = ∂ϕ
∂z

= −∂Ψ
∂x

and u is at the interface. Substituting our

potential ϕ into the above equation we get a = ϕ/(c − u) and A = iϕ.

Below z = 1 + η and we may describe the pressure as having a mean and

wave component such that p = P (z) + p(z)eiα(x−ct) and we may invoke the

hydrostatic approximation also (P (z) = P0 + g
∫ 1

z
ρdz). The momentum

equation for the perturbation in this region is

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −1

ρ

∂p

∂x
. (4)

Recalling that ∂Ψ
∂z

= u and ∂Ψ
∂x

= −w we have

p = ρ

[

(c− u)
∂φ

∂z
+ φ

∂u

∂z

]

(5)

and therefore the total pressure at z = 1 is

P = P0 +

{

−gaρ(h) + ρ

[

(c− u)
∂φ

∂z
+ φ

∂u

∂z

]

eiα(x−ct)

}

. (6)

Bernoulli’s equation for the upper region is

P

ρ
+
∂ϕ

∂t
+

1

2
(u+ u)2 +

1

2
(w + w)2 + gz = B (7)
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where B is a constant and thus the pressure at z = 1 (determined from the

upper side) is also

P = ρ

{

C − 1

2
u2 − gh+ [ik(c− u)A− ga]eiα(x−ct)

}

. (8)

Matching the pressure described by (5) and (8) and assuming the velocity

and density are continuous at z = 1+η it follows that the boundary condition

at z = 1 is

(c− u)
∂φ

∂z
+
∂u

∂z
φ+ α(c− u)φ = 0. (9)

3 Boundary Flow Data from Lake Geneva

The data we shall use to investigate the stability of cascading boundary flows

comes primarily from Lake Geneva. In winter, during cold nights, shallow

regions of the Lake are cooled and these form cascading gravity currents

which flow down the boundaries of Lake Geneva (Fer et al., 2001). Profiles

of density (ρ), downslope velocity (U) and across slope velocity (V ) have

been collected from the bottom to 25m above equating to about a third of

the overall water column. An example of such a flow is shown in Figure (3)

with a density section taken down the slope.

The flow displays hallmarks of many forms of instability. The flows are

punctuated by pulses of water consistent with roll waves in steep open channel

flows (Fer et al., 2001). Hydraulic jumps can occur in the fluid and the

stability of such events is discussed in Thorpe and Ozen’s Study. A time series

of both U and V along with temperature is shown in figure (4). The flow

is clearly unsteady, and probably turbulent, although data are not presently

available to characterise the variability at frequencies less than about 0.01Hz.

The data we shall consider in this study are 2hr averages taken of both the
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Figure 3: Cold water spilling down the sloping side of Lake Geneva from

shallow water. Temperature contours at 0.05oC from a CTD section made

on the northern side of Lake Geneva between 1030-1330 hrs local time, 23

December 1998 after a period of nocturnal cooling with positive surface buoy-

ancy flux. Station positions are marked by arrows at the top. Circles show

the positions of temperature miniloggers .A and B mark positions of vertical

arrays and C marks a warm front in shallow water. Taken from Fer et. al
(2001).
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Figure 4: Contour plots of the recorded temperature and velocity data during

an interval of 5.5, starting from 22 January 2004, 09:00 PM. Panel (a) shows

temperatures, (b) East-West and (c) North-South components of the velocity.

Data for case one is a 2 hour average taken between times marked on panel

(c) (Ozin private communication).
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Figure 5: Density (panel a), down-slope (solid) and along-slope (dashed)

velocity (panel b) and Richardson number (panel c) for case 1.

down slope and along slope components of the velocity. Measurements are

taken on an incline which is typically of similar order to that shown in figure

(2) and are chosen specifically to be those with steady slopes. The quality of

the data reduces close to 25m from the bottom and the shear becomes weak.

We thus match the data smoothly to constant profiles of density and velocity

close to this height taken as z = 1.

The two examples we shall consider are characterised as follows: Case

1, shown in figure (5), the flow has a canonical shape in the down-slope

direction, similar to those discussed in TO07 but there exists a significant

mean flow in the along-slope direction. The flow around Lake Geneva is

often cyclonic, the along-slope flow in this case being toward the West (the

154



0 0.02 0.04 0.06
0

5

10

15

20

25

ms−1

D
is

ta
nc

e 
fr

om
 B

ot
to

m
 (

m
)

a

U
V

−0.09 −0.08 −0.07 −0.06
0

5

10

15

20

25

1000*kgm−3−1000

b

ρ

−2 −1 0 1
0

5

10

15

20

log
10

(Ri)

c

Ri
U

Ri
V

Ri=1/4

Figure 6: Density (panel a), down-slope (solid) and along-slope (dashed)

velocity (panel b) and Richardson number (panel c) for case 2.

measurements are taken on the northern side of the lake). It is possible that

Ekman effects are occurring in the boundary layer driving flow up the slope

(i.e. to the right of the along slope flow) competing with the gravity driven

cascade. We do not consider such effects in this study. The flow in case 2

(figure 6) is largely down-slope but displays a curious double hump structure

perhaps due to the fluid mixing in various layers as it moves down the slope.

The presence of two inflection points may allow the development of multiple

modes of instability. In both case 1 and case 2 the Richardson number falls

well below the ‘critical’ value of 1/4 and so the Miles-Howard theorem tells

us that instabilities ‘may’ occur and linear stability to the K-H mechanism

is not assured.
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Figure 7: Image showing typical flow of cold water down slope (U) along

slope mean flow (V ) both of order 5cms−1 and measured over a vertical scale

of 25m
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4 Stability analysis of stratified shear flow

We wish to solve the Taylor Goldstein equation (2) searching for the Eigen-

value c of the fastest growing modes. As well as the condition on the upper

boundary of the flow described in section (2), the solid boundary beneath

the flow allows us to impose a no normal flow condition ( φ(z = 0) = 0 ).

The Howard semicircle theorem states that [Cr − 1/2(Umax +Umin)2] +C2
i ≤

[1/2(Umax − Umin)]2, where Umax and Umin are the maximum and minimum

values of the velocity. Initial attempts to solve (2) were made using a shoot-

ing method similar to those of Merrill (1977), and TO07. For the measured

values of U and ρ, coherent solutions to the Eigenvalue problem are not found

and the solution is dominated by modes associated with numerical instabil-

ities. Many techniques are attempted to abate such difficulties including,

changing the grid resolution, constraining the modes possible and fitting the

data with smoother cubic spline functions but no method yields coherent

results for the observed velocity and density profiles. The scheme (which we

will call M1), despite being checked against ‘synthetic cases’ generated from

the hyperbolic tan profiles used by Hazel (see figure 1), is only able to resolve

stability curves for the observed velocity and density profiles for increased

Fr (discussed later) .

In order to avoid stability problems at small ci and to allow more efficient

search for eigenvalues, a second method (M2) is developed. In M2 we write

(2) in the following form

(D2 + F (c))ψ = 0 (10)

where D2 is the second derivative operator and F (c) is function of the known

mean velocity and density profiles and c. Eigenvalues c exist when the de-
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terminant of D2 +F (c) is zero. An advanced nonlinear root finder is used to

find the roots of this expression and far more accuracy is found close to the

observed Froude number than M2 but the same results are yielded for the

cases shown in this report.

Our aim is to determine how far from being at the margin between sta-

bility and instability the observed profiles are or more precisely, how much

would we need to increase or decrease the mean velocity (or change the strat-

ification) to have a flow regime where infitesimal disturbances grow. In order

to do this we introduce a factor ǫ by which we shall divide the Froude num-

ber. A value of ǫ = 0 translates to an infinite mean velocity, no stratification

or some combination of the two extremes while ǫ = 1 translates to the ob-

served velocity and density profiles. By starting at ǫ = 0 and iterating toward

ǫ = 1 we can observe the trend in the maximum growth rates of the most

unstable modes. This technique is similar to that used by Nielsen (1991) and

TO07 increasing the bulk Froude number of the flow by the factor 1/ǫ and

extrapolating to a value of the Froude number such that the flow becomes

marginally stable. Figure (8) shows such curves for case 1 for epsilon=0 to

0.5 in steps of 0.1.

As we have both components of the velocity we may continue this 2 dimen-

sional analysis, but as in (Thorpe, 1999) we may orient the 2d disturbance in

each direction θ where the velocity in that direction is uθ = usin(θ)−vcos(θ)

and ψ(x, z, t) has the same meaning but the x direction is that of θ (see figure

9). We plot the maximum growth rates for each angle θ, again for ǫ = 0 to

0.5 in figure (12). Focusing on angles between Θ = −90o and θ = 0o rotating

between the along slope and down slope direction we estimate the critical

values of the bulk Froude number and the critical value of the maximum Ri

of the profile. We do this by extrapolating from the approximately linear re-
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Figure 9: A cartoon showing how we may orient disturbances ψ angle θ to

the down slope flow and use the velocity in that direction to conduct the

stability analysis.

lationship between ǫ and Ciα to a point where the growth rate would change

sign. An example of this linear relationship for the down slope flow of case

1 is shown in figure (10).

The manner in which such extrapolation is conducted is highly subjective

and such a method is only used to give an estimate of whether the observed

flow is ’close’ (i.e. within some range of 10%-20%) to being stable/unstable.

We may follow the same process for case 2. Figure (13) shows the stability

curves, phase speeds and growing modes for different values of ǫ for distur-

bances oriented in the down slope direction. Figure (14) again shows the

result of rotating the 2d analysis over various angles θ. We see in figure (14)
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Figure 12: Case 1: Greatest Growth Rate at each angle (panel a) and for

increasing ǫ ∗ Fr. Panel b shows a comparison between the observed bulk

Froude number of the flow and the critical value inferred from extrapolating

with increasing ǫ while panel c shows the same but for the peak Richardson

number in that direction.
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Figure 13: Nonsimensionalised Growth Rate (panel a), Phase Speed (panel

b) and (panel c) for various values of ǫ for case 2.

that a decrease in the mean velocity of case 2 reducing the bulk Froude num-

ber from the observed 0.44 to only 0.38, a reduction in the maximum velocity

of only 10-15%, would be enough to prevent perturbations from growing for

all wavenumbers. The stability analysis of case 1 suggests the flow is stable

as the extrapolation predicts a critical Froude number above that of the pro-

file, however an increase in the maximum velocity difference of only 10% in

the down stream direction would bring the flow into the estimated critical

region.
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Figure 14: Case 2: Panel a shows the greatest growth rate at each angle and

for increasing ǫ∗Fr. Panel b shows a comparison between the observed bulk

Froude number of the flow and the critical value inferred from extrapolating

with increasing ǫ while panel c shows the same but for the peak Richardson

number in that direction.
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Figure 15: Predicted growth rates (panel a) and phase speeds (b) of most

unstable modes at given orientations θ, of the perturbation. For all values

shown the wavenumber k is approximately 0.24m−1 (λ ≈ 4.17m)
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5 Discussion and ongoing work

In this study we have looked at two stratified boundary flows and find them

both to be close to marginally stable to Kelvin-Helmholtz instability. We

define the flows as marginal if an increase or decrease of the observed mean

velocity of around 10% would render the flow unstable or stable (respectively)

to linear (infinitesimally small) perturbations.

We observe, in case 2 of the cascading flows from Lake Geneva, that

instabilities are likely to occur in an orientation 60o downslope of the along

slope direction and with growth rates of order 10−4s−1 (i.e. the perturbations

would grow by a factor of e = 2.71 over a period of 2.5-3hr) phase speeds of

order 0.02ms−1, and a wavelength of approximately 4.2m. The velocity and

Richardson number profile for this angle θ are shown in figure (16). Case 1

is predicted to be stable to K-H instability but an increase in flow velocity

of approximately 10% would be likely, according to our analysis, to allow

waves of lengths of order 6m and phase speeds around 4cms−1 to grow in a

direction down the slope.

As was discussed in section (1) the presence of a boundary can greatly

inhibit the growth of unstable modes and allow smaller Richardson numbers

(i.e. larger shears) to exist without instabilities occurring. In the observed

mean profiles, only when the minimum Richardson number is below 0.1 for

6-7m of the profile is it unstable. This may seem surprising to those who take

Ri = 1/4 to be the critical point below which instability occurs but there

exist analytical examples such as those of exponential u and ρ against a rigid

boundary, where the flow is stable to all Richardson numbers. Reinforcing

the assertion that the entire profile should be considered when conducting

such stability analysis.

In the two cases discussed the along slope component of the flow had
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a nontrivial influence on the stability. Indeed, although in case 2 the along

slope component of the flow was much smaller than the down slope, the effect

on the Richardson number was significant in both profiles displaying different

minimum Ris at different depths (figure (6)) leading to a slightly different,

and apparently more unstable profile at the angle of 30o to the right of the

down slope direction.

Although many cases remain to be explored, this work has presented

evidence in support of Turner’s conjecture that the mean state of stably

stratified boundary flows is maintained in a state of marginal stability. It

remains to be seen if deep ocean overflows and wind driven surface flows, can

be shown to be stable in a similar way and whether simple techniques can

then be applied to the output of numerical model data to asses its stability

and constrain such a model.
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Double-Diffusive effects in a Dam Break Experiment

Frédéric Laliberté

March 11, 2008

Abstract

A rotating dam break experiment was conducted with a vertical barrier
at the midpoint separating a salt solution in one half of the channel and a
sugar solution in the other half. Sugar diffuses slower than salt so that it plays
a role equivalent to oceanic salt which diffuses slower than heat. In simpler
experiments with fresh water in one half and a slightly denser saline solution
in the other, a tongue of fresh water flows along the surface on the right side
of the channel and the interface at the surface dividing the two fluids becomes
unstable and sheds fresh vortices into the salt solution. When the less dense fluid
contains salt and the heavier fluid contains sugar, with a small initial density
difference, much weaker instabilities occur and vertical diffusion of salt into the
sugar solution reduces the density of the saline solution and therefore increase
the density differences. This local increase in reduced gravity, resulting in spatial
variations of the deformation scale, widens the boundary current, suppresses the
instabilities and enhance the rightward flux of mass.

1 Introduction

Previous works on gravity currents are numerous with early results dating as far
back as Benjamin [1], who mentions even earlier work by von Kármán (1940). In
his paper, Benjamin describes non-rotating gravity currents in a two-layer system
and derives some of the first rigorous results, including an asymptotic expression for
the velocity of propagation of a gravity current over a deep layer. This result, which
assumes that away from the head of the current the depth attains a constant value
H, states that the head’s velocity should be c =

√
2g∆ρ

ρ H. This system has been
extensively studied in the laboratory with results that vary depending on the flow
regime. In most flows, viscosity as well as mixing tend to remove the factor

√
2, and

other effects, such as the interaction with a wall perpendicular to the motion, tends
to affect the velocity dramatically.
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In a rotating environment, the dynamics may be expected to be quite different
with the current being constrained to propagate along a wall due to Coriolis deflec-
tion [3]. However, apart from an initial adjustment, it has been shown by Stern,
Whitehead and Hua [5] both theoretically and experimentally that the the gravity
current nose speed should be essentially the same as for the non-rotating case, with
similar dependence on viscous, mixing and boundary interaction effects. In another
set of experiments, Stern [4] investigated the evolution of a coastal gravity current
and observed strong instabilities. These instabilities often develop filaments and
smaller eddies, impacting on the entrainment (and detrainment) capabilities of the
jet.

As described by Stern and Chassignet [2], several laboratory experiments in a
rotating basin have been carried out in which a lighter fluid (fresh water) flows as
a boundary current over a denser environment (salty water). In these experiments,
detachment of eddies is common and is thought to reduce significantly the down-
stream transport of fresh water. The impact on the jet is observed to be important
in comparison with the theoretical laminar flow with a large amount of detrainment
occurring due to small scale eddies separating from the jet. Depending on the na-
ture of these small scale turbulent features, the current can be observed to effectively
widen or actually “eject” mass to its surroundings.

In double diffusive experiments, where one of the fluids is a sugar solution and
the other is a salt solution, it has been observed [6] that these instabilities disappear,
that the gravity current propagates faster and that the boundary current is wider.
The exact mechanism on how the instabilities are damped was not clarified nor how
this influences the effectiveness of the flow to transport lighter fluid over heavier
fluid.

The goal of this report is to demonstrate, for the range of parameters investi-
gated, that the flow is primarily driven by double diffusion and that it increases the
transport of lighter fluid over heavier fluid. We also show that the rate at which the
boundary current widens is higher in the regions where a non-diffusive current would
shed eddies, leading us to propose that it is the local increase in the deformation
radius by double diffusion that suppresses the interfacial instabilities. In section 2
we describe the experimental setup and in section 3 how we processed our photo-
graphic data. In section 4 we discuss our results, always comparing double-diffusive
experiments with their non-diffusive counterparts. We finally conclude in section 5
and we propose a theoretical model in appendix A for future work.
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Figure 1: Our experimental setup, where camera 2 was not used. Taken from [6].

2 The Experiment

2.1 Experimental Setting

The experiment was conducted in a 60 cm ×10 cm tank with a removable barrier
in the middle. The tank was on a table rotating with angular velocity Ω where
f = 2Ω = 1.25 s−1. A co-rotating digital still camera was placed directly above the
tank and a mirror inclined at 45◦ to the horizontal was used in order to obtain a side
view. The lighter fluid, placed on the left, was dyed blue and we used approximately
1 liter of each fluid, leading to a depth of ≈ 3.3cm. The experiments were carried
through in two distinct sessions, one during the summer of 2007 and the other during
the month of October 2007. The setup changed slightly between these two sessions,
with the major difference being the introduction of a motor to lift the gate. The
motor has the advantage of lifting slowly enough that only limited turbulence is
produced by the removal of the gate but with the drawback that it takes several
rotations before the gate is lifted, thus impacting on the initial evolution of the flow.
The experimental schematics are depicted in figure 1.

2.2 Experimental Parameters

The environment was maintained at a constant temperature, 20◦C, and the atmo-
spheric pressure was assumed to be constant. The rotation frequency was kept
constant at a value of f = 1.25 s−1. This choice was to some extent arbitrary and
was mainly dictated by experimental manipulations. A faster rotation would have
made manipulations more intricate without having a profound impact on the physics
of the experiment. This frequency, corresponding to a rotation period of 10.25 s, was
conveniently in phase with our digital camera’s highest shooting rate, at 11 s. This
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Table 1: Experimental parameters and the number of experiments conducted

(a) Summer 2007
`````````````̀∆ρ (g cm−3)

ρ0 (g cm−3)
0.99823 1.0100 1.0400

2.0 ×10−4 1 1 1
3.5 ×10−4 1 1 1
5.0 ×10−4 1 1 1

(b) October 2007
`````````````̀∆ρ(g cm−3)

ρ0(g cm−3)
0.99823 1.0050 1.0100 1.0150

0.8 ×10−4 2 3 3 3
2.0 ×10−4 3 3 3 4
3.5 ×10−4 3 3 3 3

The experiments with ρ0 = 0.99823 g cm3 were carried with fresh water on top and
salty water on the bottom so that in these situations ∆ρ = ρT − ρf . For all other
experiments, the salty solution was on top and ∆ρ = ρS − ρT .

slight out-of-phase leads to a slow phase change, reducing possible biases due to
position.

In order to describe our experiments, we use two parameters, ∆ρ = ρS − ρT and
ρ0 = ρS , where ρS and ρT are the density of sweet water and salty water, respectively.
The first quantity indicates how fast the boundary current should propagate initially
(vi ≈

√
g(∆ρ/ρ0)H) whereas the second quantity is a measure of how strong double

diffusion is at the removal of the gate (the diffusive fluxes are proportional to ρ0−ρf ,
where ρf is the density of fresh water). Note that the sign of ∆ρ indicates which
of the two layers is salty. These parameters have been investigated for the values
shown in table 1.

Negative values of ∆ρ for ρ0 > ρf = 0.99823 g cm3 would lead to “sugar fin-
gers”, the salty-sweet system’s counterpart of salt fingers in the warm-salty system,
a situation we decided not to study because of its complicated layer structure.

3 Data Acquisition

The fluid in each experiment was calibrated with a 10−5 g cm−3 accurate densiome-
ter. These values were assumed highly accurate with inconsequential associated
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errors since we were computing density differences of the order of 10−4 g cm3. The
rest of the data was acquired by two cameras, both top mounted with a side view
provided by a 45◦ mirror. One of the cameras was a low-resolution analog cam-
era, used mainly as a quick experiment assessment tool. The second camera, a still
10 megapixels digital camera (resolution of 2448 × 3264 pixels), was our reliable
data acquisition apparatus. The camera was set to take a shot every 11 seconds (the
shortest interval allowed by the equipment) with constant lighting and fixed exposure
settings. The result is a sequence of high resolution photos. The main uncertainty
remaining is the exact moment that the gate was pulled. This exact moment is
in fact immaterial to our analysis since we will look mainly at time derivatives of
quantities and never compare two quantities at a fixed time after the removal of the
gate.

3.1 Image Processing

The image files produced by the camera, once loaded in Matlab, have three com-
ponents for each pixel: one red, one green and one blue. If blue dye was used, one
can infer the thickness of the blue layer by the intensity of blue color, after having
removed the constant signal coming from shadows and other constant variations in
spatial light intensity. In figure 2, we show a photo that includes the side view.
For y > 0, we see the fluid from directly above and for y < 0, we see the side view
through the 45◦ mirror. This means that one can recover the z-coordinates by simply
writing z = −y for y < 0. In the figure, the side view shows a linearly decreasing
depth in x from 10 cm to 20 cm to the right of the barrier (located at x = 0 in
the graph). Since during the experiment we could easily assess that the most blue
dye was located at y = 0 cm, we know that along this line the thickness decreases
linearly.

Next, we show in figure 3 the adjusted color intensity for the three color com-
ponents along the line y = 0 in the photo. The adjustment refers to the removal of
white noise from the blue color, by using the empty tank as a reference point. In
this figure, we see clearly that the intensity increases linearly (the line is a linear
fit) over the same region over which the thickness decreases linearly. From this, we
concluded that there is a linear correspondence between thickness and adjusted blue
color intensity. This linear relation is computed independently for each experiment,
in order to remove systematic errors.

One of the remaining problems is to filter out the noise when the intensity of
blue color reaches saturation. Even though the intensity is on average constant in
the no-dye region, the fluctuations can be quite large, hence a need to filter out this
unnecessary noise. If one would simply demand that negative thicknesses be ignored,
important noise would be left. Instead, we realized that the red color intensity was
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almost a step function at the nose (as can easily be seen from figures 2 and 3 ), and
so we used the red component as a simple cutoff criterion (we cut off at > 70 of
intensity) to decide when the thickness was zero, regardless of the noise.

One could inquire why the green component of the image was not used instead
of the blue. After all, in figure 3 the green intensity and the blue intensity seem to
behave similarly. However, there is one major difference: the green color is every-
where less intense, making our thickness inference more susceptible to noise for thick
regions, leading to a less accurate layer thickness analysis.

In the remaining part of this report, when we refer to the thickness we refer to
the linearly inferred thickness plus the red-color filtering that we just discussed.

x (cm)

y 
(c

m
)

Frame 14, ρ0 ≈ 1.04 and Δ ρ = .35 × 10−3
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Figure 2: Picture taken during an experiment. In the upper part of the picture, the
line shows the section along which figure 3 is plotting the color intensities. In the
lower part, the line is there to show how linear the depth is in this region.

4 Results

4.1 Evolution of the jet

Non-Diffusive case, fresh water over salty water In the non-diffusive case,
the jet starts off as a laminar boundary current of width determined by the radius
of deformation [4] and is usually accompanied by an unstable interface that fluxes
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Figure 3: The color intensity along the line in figure 2. The line is a linear fit on
the blue color. Note the sudden increase in red color at x ≈ 22 cm in the transition
zone between blue dye and no dye.

mass toward the center of the tank. Sometimes eddies are formed (for small density
differences) and detach themselves from the right-flowing current.

In figure 4, we show the time-evolution of a non-diffusive dam break experiment.
What is observed is typical of small reduced gravity experiments, with strong insta-
bilities and numerous eddies. Note how most of the dye is restricted to a region close
to the boundary, with the transition zone between this current and the interior flow
being almost entirely populated with instabilities and their generated eddies. The
evolution is constant with the first onset of instabilities appearing very shortly after
the removal of the gate. Otherwise, most of the dye seems to be transported first
by the boundary jet with a secondary transport towards the interior, by the defor-
mation of the interface. Notice in figure 4 the big lump of blue dye that seems to be
trapped left of x = 5 cm; this feature was observed systematically in all non-diffusive
experiments.

Double Diffusive case, salty water over sweet water The double diffusive
case has been extensively studied in non-rotating environments. The typical double
diffusive jet evolution with rotation has not often been described and it still remains
unclear how the instabilities observed in the non-diffusive case are suppressed.

In figure 5, we show the evolution of the jet for one of the double diffusive
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Figure 4: Time evolution of a non-diffusive front for ρ0 = 0.99823 g cm−3 and
∆ρ = 2.1× 10−4 g cm−3.
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experiments with ∆ρ about the same as that in figure 4. One quickly notices that
the boundary current is wider and has progressed farther than the one in figure 4.
It is also relatively shallow away from the boundary. What is striking about these
experiments is how they inhibit the development of the instabilities. One can see in
figure 5(d), the interface growing filaments, in precisely the same manner as for the
non-diffusive jet. However, for some reason, these are not sustainable in a double-
diffusive environment and collapse soon after their first appearance. They usually
simply evolve as to reform another interface, a bit further from the boundary.

Referring again to figure 5, one sees how a large part of the blue dye actually
does not have to propagate first through the boundary current but instead is able to
penetrate much further. This is in stark contrast with the non-diffusive experiment
where most of the dye was confined to x < 5 cm or to the boundary current. In the
double diffusive case, the bulk of the blue dye does not even seem to be confined,
except that the interior circulation appears to be slower than the propagation speed
of the jet. This gives a second way for double-diffusive experiments to flux mass
rightward, a statement that will be clarified later.

4.2 Nose Displacement

The speed at which the tip of the gravity current propagates is directly affected
by the gravitational forcing associated to ∆ρ. This means that any change in ∆ρ,
through diffusion for example, will influence the speed at which the nose moves. In
order to quantify how much, we computed the nose position as a function of time
for each experiment. Then, we found the linear fit of the nose position over the time
interval [t15, t25], where the time tx0 is the first time when the nose reaches x0. The
slope of the linear fit gives the nose speed over that interval. We have plotted these
speeds as a function of ρ0 in figure 6.

For the two smaller ∆ρ, we observe a clear tendency of the flow to be accelerated
with increasing ρ0 but for the largest ∆ρ, this tendency seems absent. One expla-
nation is that as ∆ρ increases the initial velocity increases, which reduces the time
scale, but for fixed ρ0, the diffusive fluxes are kept constant. The compounded effect
of diffusion over the course of an experiment will then be of the order of the time
scale multiplied by the diffusive fluxes. Therefore, a smaller time-scale should lead
to weaker total diffusive effects. One could imagine in the limit of very large ∆ρ, for
a fixed ρ0, to observe no clear effects of double diffusion before the nose reaches the
end of the tank. In figure 7, we plotted the relative gain of speed by double diffusion
for each ∆ρ. The bigger the ∆ρ, the smaller the relative gain is, which justifies our
explanation.

Alternatively, one could argue that the error bars being as large as they are, these
results should be taken with some reserve. This is clearly true for the largest ∆ρ
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Figure 5: Time evolution of a double diffusive front for ρ0 = 1.01 g cm−3 and
∆ρ = 2.0× 10−4 g cm−3. Note that panel 5(f) occurs at a time between panels 4(c)
and 4(d)
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Figure 7: The ratio of the nose speed for ρ0 = 1.015 g cm−3 to the velocity for
ρ0 = 1.005 g cm−3. Observe the decrease in ratio with increasing ∆ρ.

but not for the smallest. More experiments would be needed to solve this problem,
ideally with a longer tank for higher ∆ρ.

4.3 Mass transport

The nose speed is an important quantity because it gives us an idea of how fast the
system is able to transport lighter fluid to the right. It is however limited in scope
because it only tells us how fast the current close to the wall at y = 0 cm is going. In
the situation where the bulk of the mass is transported close to the wall, this velocity
multiplied by the cross-section of the boundary current would be equivalent to the
mass transport. But if that is not the case and an important part of the transport
is located far from the wall, this velocity does not give the whole picture. One could
imagine a fast boundary current that releases an important quantity of slow moving
fluid towards the interior. The effect would be a fast nose and a wide current that
would not flux much more mass than a slower current that does not eject any mass
towards increasing y. The mass transport thus appears to be an important feature
of the flow worth investigating.

In order to compute the mass transport, we assume that the blue dye is a tracer
and that each layer is shallow enough that it has a velocity uniform in z:

∂th+∇ · (hu) = 0 (1)

where h is the thickness of the blue layer.
Since there is no flow normal to the side walls, if we integrate over the region to
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the right of a vertical line x, we get

∂t

[ ∫ 30

x

∫ 10

0
h dx dy

]
=
∫ 10

0
h(x, y)u(x, y)dy (2)

where the term in the time derivative corresponds to the total amount of dye at the
right of x, that will be denoted H(x, t), and where the right hand side corresponds
to the total horizontal dye flux across the vertical line at x, that will be denoted
Fh(x, t).

This means that from our data we can recover the horizontal flux through any
vertical line. This can be done by fixing an x, x = 15 cm for example, computing
H(15, t) for all time and then taking the time derivative. This way, we can observe
how efficient our currents are at transporting mass rightward. Using the same ap-
proach as with the nose speed, we compute the derivative of H(15, t) by using a
linear fit on the time interval when the nose is between x = 25 cm and x = 30 cm.
We are using a different interval because as the nose crosses the line x = 15 cm,
H(15, t) increases non-linearly until the nose is sufficiently far.

In figure 8, we plotted the fluxes at 15 cm as a function of ρ0. The flux is seen
to increase with ρ0 but it is unclear why there so much variability. Clearly, higher
density differences are leading to apparently smaller gains, which is coherent with
our discussion about velocities.

4.4 Area Increase

Another striking feature of double diffusive gravity currents is how their width exceed
that of non-diffusive currents. In order to get a measure of the width, we first tracked
the evolution of the interface by using an uncommon technique. The technique uses
the h(x, y, t), the depth in space and time, and the function

yp(x, t), such that
∫ yp(x,t)

0
h(x, y′, t) dy′ = p

∫ 10

0
h(x, y′, t) dy′, (3)

where we must have p ≤ 1.
If one sets p = 1, y1(x, t) is simply the interface between the blue and the trans-

parent fluid. By using p < 1, yp(x, t) is the curve below which lies a fraction p of
the mass on the vertical line passing through x. It enables us to track the interface
without really tracking it, thus reducing the noise, especially in non-diffusive exper-
iments. Also, it emphasizes the fact that even though the interface has important
physical properties, it is what happens to the bulk of the flow that interests us. We
show an example of such a curve with p = 0.75 in figure 9.

Now, one can compute the area Ap(t) =
∫ 30
0 yp(x, t)dx, thus finding the area

occupied by the fraction p of the mass closest to the boundary at y = 0 cm. Using
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Figure 9: An example of the curve y.75(x) for a double diffusive experiment. For
each x, y = y.75(x) corresponds to the point below which lies 75% of the mass on
the vertical passing by x.
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this technique on our data, we realized that on the time interval where the nose
lies between x = 15 cm and x = 25 cm, Ap(t) is almost a linear function of time.
Computing a linear fit on this function over that time interval is thus justified and
the slope of the fit is then a good approximation of the time derivative dAp(t)

dt . This
quantity is then giving us an idea how fast the bulk of the fluid is spreading.

Dilatation of the interior flow. The flow can be qualitatively split into two
regions: the boundary current and the interior flow. The boundary current contains
most of the mass, is concentrated close to the wall at y = 0 cm and its dynamic is to
first order characterized by the nose velocity. The interior flows is defined as the slow
moving, shallow and instabilities prone region that remains. When one is evaluating
how the bulk of the flow is spreading using the previously described technique, both
the evolution of the boundary current and of the interior flow contribute to the
analysis. Since the two regions have qualitatively different dynamics, we should not
expect to capture any feature particular to any one of these regions. We will therefore
have to devise an analysis that enables us to observe each region separately.

In order to do so, we need to have a quantitative definition of each region. Any
such definition will be to some extent arbitrary so here we decide to define the interior
flow as the region that has 50% of the mass furthest from the boundary. Basically, it
is the region contained between the curve y.5(x, t) and y.95(x, t). The rate of change
of its area, dA.95

dt − dA.5
dt , indicates how the bulk of the interior spreads. The results

are shown in figure 10.
It shows a clear increase in area with ρ0, implying a general increase in defor-

mation radius. One could compute the average widening, or the average increase in
deformation radius, by dividing the rate of change by 20 cm, the average length of
the boundary current when the derivative was taken. This would be a way to quan-
tify the bulk diffusion but what interests us is where most of this diffusion occurs,
not how much it occurs on average. To accomplish this, we have to develop another
special technique.

Spatial distribution of area increase. We start by subdividing the interval
[0, xN (t)], where xN (t) is the nose position, in n subintervals [xi, xi+1]. Then we
define the area under the curve yp(x, t) in the ith subinterval by

a(i)
p (t) =

∫ xi+1

xi

yp(x, t) dx. (4)

Summing up and taking the time derivative,

dAp

dt
=

N∑
i=1

da
(i)
p

dt
(5)
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where Ap is as defined in section 4.4.

The functions da
(i)
p

dt , the rates of change of the area in the ith subinterval, are the
quantities we would like to recover because they locally quantify how fast the flow
spreads towards the interior. But what we have now is one equation for n unknowns,
which is highly underdetermined. Thus, in order to make any progress, we have to
make some assumptions. We assume that for any p1, p2 such that .95 ≥ p2 > p1 ≥ .5
we can write

da
(i)
p2

dt
− da

(i)
p1

dt
= ā′i

(
a

(i)
p2 (t)− a

(i)
p1 (t)

a
(i)
.95(t)− a

(i)
.5 (t)

)
, (6)

which means that every subinterval has an uniform rate of area increase ā′i. The
factor is the fraction of the area between yp2 and yp1 with the total area of the
interior flow in the ith subinterval.

We then divide the interval [.5, .95] in m subintervals [pj , pj+1], yielding a system
of m equations for ā′i,

dApj+1

dt
−
dApj

dt
=

n∑
i=1

ā′i(t)

(
a

(i)
pj+1(t)− a

(i)
pj (t)

a
(i)
.95(t)− a

(i)
.5 (t)

)
, (7)

which is of the form Mξ = b with the columns of M summing to 1.
If m = n, this system has a unique solution. However, this solution will most

likely result in negatives ā′i, which would indicate a reduction of area in some interval
[xi, xi+1]. Even if such a situation could be physically justified, we would like to avoid
it for numerical stability purposes. So, instead, we solve the system in a least-squares
sense demanding that the solution be everywhere positive and that the total change
in area be conserved,

dA.95

dt
− dA.5

dt
=

n∑
i=1

ā′i(t). (8)

This is an optimization problem that depends on the initial guess, here chosen
as a random vector, to reduce bias.

We can then convert the ā′i to local width increase by

l̄′(x, t) = ā′i

(
y.95(x, t)− y.5(x, t)

a
(i)
.95(t)− a

(i)
.5 (t)

)

)
, for x ∈ [xi, xi+1]. (9)

Since by construction l̄′(x, t) ≥ 0, it can be transformed into a distribution and
one can compute its moments. For example, one can compute x̄ = 〈xN − x〉l̄′ , its
first moment with respect to the nose position. This value tells us where the average
widening takes place. If it is close to 0, it means most of the widening happens
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Figure 11: The average distance from the nose where the widening of the jet occurs.
Note how much closer to the nose the non-diffusive experiments widen.The error
bars are sampling standard deviations.

at the nose whereas, if it is non-zero, the widening occurs on average at x̄ cm at
the left of the nose. In figure 11, we show the results for our experiments. We
observe that for non-diffusive experiments, the increase is close to the nose, which
is not surprising considering that our technique does not correct for the increase
in area due to the gravitational propagation of the boundary current. For diffusive
experiments, however, most of the widening occurs away from the nose, at about 5
cm to the left, precisely where the unstable eddies would form in the non-diffusive
case.

5 Conclusion

The double diffusive rotating dam break experiment shows significant qualitative
differences from the non-diffusive one, with most instabilities suppressed. The re-
sulting boundary currents are wider and transport mass more effectively. From our
data, we are able to extract a clear trend that shows an increase in nose velocity with
increasing ρ0, mainly for smaller ∆ρ. Moreover, our data suggest that the rightward
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flux of mass is enhanced with increasing values of ρ0. This indicates that double
diffusive systems should be more efficient at transporting mass than non-diffusive
ones, with the effect of ρ0 dominating that due to ∆ρ in diffusive experiments.

This means that over the course of the experiment, ∆ρ must acquire a signifi-
cant spatial variation, in order to drive the system. Such a spatial variation, one
can hypothesize, must increase the local radius of deformation, thereby widening
the boundary current. Variations of radii of deformation should also influence the
turbulent cascade and, hence, the energy spectrum distribution of the system since
it is the scale at which eddies evolve. This means that major spatial variations in
deformation scale would most likely distort and make unsustainable two-dimensional
type turbulent eddies.

We have demonstrated that the width of the boundary current in diffusive ex-
periments exceeds that in non-diffusive ones, and that the width increases with in-
creasing values of ρ0. In diffusive experiments, the first moment of this widening was
shown to occur in the region where the turbulent eddies form in non-diffusive exper-
iments. In contrast, in non-diffusive experiments it occurred close to the nose, which
is consistent with the biases of our measurement method. This strongly suggests
that the deformation radius in regions where instabilities would normally develop in
non-diffusive experiments increases in double diffusive experiments. This leads us to
conclude that this local inflation of the deformation radius destroys the instabilities.

This conclusion remains to be investigated using more theoretical models. In
appendix A, we propose a simple toy model that could verify this explanation. It
is based on a two-layer QG model with spatially varying radius of deformation. We
expect that in such a model growth of instabilities will be slowed, if not removed,
and that the width of the boundary current will be wider than in situations with a
constant radius of deformation.
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A Two-layer QG with non-uniform densities

To derive the shallow water equations for non-uniform densities, one makes the
momentum budget in a test volume containing a whole layer:

∂tρ1h1 +∇ · (ρ1h1u1) = 0,

∂t(ρ1h1u1) +∇ · (ρ1h1u1 ⊗ u1) + f × ρ1h1u1 = −g∇(ρ1
h2

1

2
)− gρ1h1∇h2, (10)

∂tρ2h2 +∇ · (ρ2h2u2) = 0,

∂t(ρ2h2u2) +∇ · (ρ2h2u2 ⊗ u2) + f × ρ2h2u2 = −g∇(ρ1h1h2 + ρ2
h2

2

2
) + gρ1h1∇h2,

These equations characterize the system if ρi are constants. However, here we
want to allow them to vary in both space and time. We assume that ρi = ρ0+ρTi+ρSi
where ρ0 is the density of pure water at some fixed temperature. ρT and ρS are the
densities of salt and sugar respectively.

We assume that the two layers don’t mix but that they can exchange chemicals.
This leads to

∂t(ραihi) +∇ · (ραihiui) = (−1)iSα +Dαi,

∂tρ0hi +∇ · (ρ0hiui) = 0. (11)

where the last expression implies conservation of volume since ρ0 is constant.
Sα is the exchange of mass between the two layers. A heuristic candidate would

be:
Sα = καρi(mα1 −mα2)

√
|∇h2|2 + 1|ρα1 − ρα2| (12)

where mαi = ραi

ρi
is the mass fraction and κα is a diffusivity constant.

From these equations, one can find advection equations:

Dmαi

Dt
= (−1)i Sα

ρihi
+
Dαi

ρihi
(13)

Where the diffusion can be written as

Dαi

ρihi
= κ̄α∇2mαi

or as any other mass-ratio diffusion.
From now on, we will drop the diffusion as it only add uninteresting complexity.
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Equations After some manipulations, one gets the following equations:

∂thi +∇ · (hiui) = 0,
Dmαi

Dt
= (−1)i Sα

ρihi
,

γi =
1
ρihi

=
1−mTi −mSi

ρ0hi
, (14)

Du1

Dt
+ f × u1 = u1γ1(ST + SS)− gγ1∇(ρ1

h2
1

2
)− g∇h2,

Du2

Dt
+ f × u2 = −u2γ2(ST + SS)− gγ2∇(ρ1h1h2 + ρ2

h2
2

2
) + g

γ2

γ1
∇h2.

March towards a QG formulation In order to find a QG formulation of the
problem, one must first find the geostrophic winds. First, we assume a small Rossby
number, leading to:

f × u1 = u1γ1(ST + SS)− g∇(h1 + h2)− g
h1

2
∇ρ1

ρ1
,

f × u2 = −u2γ2(ST + SS) + g
ρ2 − ρ1

ρ2
∇h1 − g∇(h1 + h2) (15)

− g(h1
∇ρ1

ρ2
+
h2

2
∇ρ2

ρ2
).

We now assume the density variations in horizontal to be small and that the
mass exchange between the layers is relatively weak. This leads to the following
streamfunctions:

ψ1 =
g

f
(h1 + h2),

∇2(ψ2 − ψ1) = −∇ · (g
′

f
∇h1). (16)

Advection of reduced gravity We now assume that the density difference is
small between the two layers, so that ρ1 ≈ ρ2 = ρ̄. Subtracting the two advection
equations, yields

D(∆mα)
Dt

=
Sα

ρ̄
(

1
h1

+
1
h2

)

and adding the two diffusers,

D∆m
Dt

=
ST + SS

ρ̄
(

1
h1

+
1
h2

)
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where ∆m = (mT2 +mS2)− (mT1 +mS1).
Now, one can write

1
ρ̄
(ST + SS) =

√
|∇h2|2 + 1(κT ∆mT |∆mT |+ κS∆mS |∆mS |))

where we wrote mαi ≈ ραi

ρ̄ .
Now, assuming κS

κT
� 1, we obtain

D∆m
Dt

≈ κT ∆mT |∆mT |(
1
h1

+
1
h2

)
√
|∇h2|2 + 1 (17)

which can be seen as a equation of reduced gravity since g′ ≈ g∆m.

PV advections By defining the PVs:

qi =
ωi + f

ρihi

One get the following advection equations:

Dq1
Dt

= −γ2
1f(ST + SS) + γ1J(ψ1, γ1(ST + SS))− g

2
J(γ1, h1),

Dq2
Dt

= γ2
2f(ST + SS) + γ2J(ψ2, γ2(ST + SS)) + γ2J(g′, h1)−

gγ2

(
J(
h1

ρ2
, ρ1) +

1
2
J(
h2

ρ2
, ρ2)

)
.

Assuming a small Rossby number and high correlation between densities and
constant heights, we can neglect most terms:

Dq1
Dt

= −γ2
1f(ST + SS),

Dq2
Dt

= γ2
2f(ST + SS).

The last terms remaining are the ones relating the exchange of vorticity due to the
exchange of mass, in order to conserve the total vorticity. One could not bother
and assume that the mass exchange is not done in a PV preserving kind of way and
neglect them, which is the approach we will take here.
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PV inversion The PV perturbations can be written as:

qi ≈
1

ρ̄iHi

(
f + ωi −

f

Hi
h′i −

f

ρ̄i
ρ′i

)
The resulting set of simplified equations is:

ψ1 =
g

f
(h′1 + h′2),

∇2(ψ2 − ψ1) = −∇ · (g
′

f
∇h′1), (18)

qi = ∇2ψi −
f

Hi
h′i −

f

ρ̄i
ρ′i,

∂tqi + J(ψi, qi) = 0.

Looking more closely at the inversion equations:

ξ1 = q1 −
f

ρ̄1
ρ1 = ∇2ψ2 −∇ · (g

′

f
∇h′1)−

f

H1
h′1,

ξ2 = q2 −
f

ρ̄2
ρ2 = ∇2ψ2 +

f

H2
h′1 −

f2

gH2
ψ1.

We use the rigid lid approximation to neglect the last term in ξ2, leading to:

ξ1 = ∇2ψ2 +∇ · (g
′

f
∇h1)−

f

H1
h′1, (19)

ξ2 = ∇2ψ2 +
f

H2
h′1.

One can solve the baroclinic equations for h1:

ξ2 − ξ1 = −∇ · (g
′

f
∇h′1) + (

1
H1

+
1
H2

)fh′1. (20)

with homogeneous dirichlet BCs.
Which enables to solve for ψi:

ξ1 +
f

H1
h′1 = ∇2ψ1, (21)

ξ2 −
f

H2
h′1 = ∇2ψ2.

This then gives us h2:

h′2 =
f

g
ψ1 − h′1.

So this means that the system we are looking at consists of 6 advection equations,
one helmhotz equation and 2 poisson’s equation.
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Convection of a van der Waals fluid near
the critical point

Henrik B. van Lengerich

advised by E. A. Spiegel

Abstract

Convection in a van der Waals fluid, with no-stress and fixed flux boundary conditions is
studied. The problem is scaled with the infinite horizontal wavelength of the convection cell. A

criterion is found that predicts the onset of convection; it contains information from the
Rayleigh and Schwarzschild criterion over the entire cell. The criterion is evaluated and

compared with previous experiments on a similar experiment. Governing equations, boundary
conditions, constitutive equation and convection mechanisms are explained.

1. Introduction

Past studies of laboratory convection have focused on incompressible or ideal gas fluids. The
aim of this study is to approach a theory of convection for a fluid containing both a liquid and a
gas phase. This is done by focusing on the conditions where the phase change originates, namely,
the critical point of the substance.

Convection near the critical point is difficult both experimentally and theoretically because
the fluctuation in properties becomes very large and many thermodynamic properties (such as
the heat capacities and thermal conductivity) diverge. We model the fluid as an ideal van der
Waals fluid, which a good qualitative (but not quantitative) model because it captures two
phases, the critical point, and the divergence of thermodynamic properties. Because the thermal
conductivity goes to infinity as the critical point is approached, we show that a fixed flux, rather
than a fixed temperature boundary is sometimes appropriate. By doing this we can find the
critical temperature difference by scaling the problem appropriately as done in [8].

This paper will first explain some of the previous research that has been done on convection
near the critical point of the fluid. Background information is given to explain the properties of
the van der Waals fluid and the onset of convection for both incompressible and compressible
fluids. Finally, governing equations are derived for the situation to be studied, these equations
are scaled, and then the criterion for the onset of convection is found.

2. Literature Review

The criterion for instability as well as the plan form function (the function which explains
patterns and evolution) for an ideal gas with fixed flux and no-stress boundary conditions are
described in [8]. Analysis of an incompressible fluid with fixed flux boundaries was done by
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Chapman and Proctor [7]. A derivation of when to use the constant flux condition was given
by Hurle et. al. [11], however, therein the thermal diffusivity and not thermal conductance was
used to match the fluxes in the solid and fluid. This error is corrected in the boundary condition
derivation in this report.

Experimental studies have been done by Kogan et. al. [12] to determine the onset of convection
for 3He near the critical point. These find that the onset can be understood using only the
Rayleigh criteria and the adiabatic temperature gradient (aka Schwarzschild criterion), the same
result was found by Carles and Ugurtas [6] using the full governing equations and real data to
determine which terms can be ignored. Experimental studies by Assenheimer and Steinberg [2]
show that close to the critical point hexagons, lines, roll patches, and target or spiral patterns can
be seen. This motivates the current research because it may be possible that additional patterns
can be formed, and a plan form function of a van der Waals fluid would help to find the proper
parameter regime.

Previous studies of convection near the critical point have focused on the ”piston effect” which
is the heating up of fluid close to the boundary, then the boundary fluid expands and compresses
the bulk fluid, and the compression of the bulk fluid raises the bulk temperature. This was
explained using thermodynamic arguments by Onuki [13] and then later derived by Pierre Carles
in a lengthy manner using all the governing equations [9], [5]. Further studies continue to look at
this piston effect [1].

There have been some numerical simulations of van der Waals fluids close to the critical point
[1], [15]. These focus on the piston effect and do little in the way of making new predictions.

Lastly, there is a very good review of hydrodynamics near the critical point by Gitterman [10],
and the thermodynamics for phase changes and close to the critical point are concisely explained
in the second edition of Callen’s book on thermodynamics [4].

3. Gas Properties

A typical phase diagram is shown in Figure 1. The liquid and gas phases are separated by a
phase transition line. When the phase transition line is crossed there is a discontinuous jump
in the thermodynamic properties of the fluid (such as conductivity, density, and heat capacity).
This jump becomes smaller and smaller as one moves to higher temperature and pressure, until
the discontinuities disappear at the critical point, which is where the line ends. Incidentally, no
critical point has been found for the liquid-solid phase transition.

Fig. 1. Typical Phase Diagram
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3.1. Van der Waals Fluid

A van der Waals fluid is a bunch of particles that are attracted to each other by some potential
effects and repelled due to a hard spheres shell. We assume that the attraction force decays to
the -6 power. The constitutive equation

P =
RρT

1− bρ
− aρ2 (1)

can be derived from such a model. Here b contains the information of the finite size of the
particles, and as the density of the particles goes to 1/b the space is completely packed with
particles so the pressure goes to infinity. The aρ2 term represents the attraction of the particles,
and this tends to decrease the pressure.

In figure 2 are shown several isotherms of the van der Waals equation. The bottom (green)
curve has an isotherm temperature below the critical point, from the phase diagram this suggests
that the fluid has two phases. Where are the two phases? Imagine a fluid that lies on the green
isotherm that has a density of about one, so that the slope is positive. Imagine a fluid blob at this
point in the surrounding fluid. If the volume of this blob is made to be slightly bigger, then the
pressure increases, so the volume continues to increase until the slope of the curve is negative.
Similarly, if the volume is perturbed to be slightly smaller, the blob will continue to decrease in
size until it reaches a point where the slope of the curve is negative. So all of the liquid will break
up into high density and low density blobs, and these are the two phases. Usually a straight
line is drawn across such there are no unstable slopes in the isotherm pressures, when this is
done, it is easy to see the discontinuity in density that occurs at the phase transition. When the
temperature is well beyond the critical value the top (red) curve shown in Figure 2 applies. This
fluid has no phase transition because there are no parts with positive slopes. The middle curve is
the curve at the critical temperature, the critical point is where the first and second derivatives
of the pressure with respect to volume occur at the same volumes (ρc = 1

3b ,Tc = 8a
27b ,Pc = a

27b2 ).

Fig. 2. Pressure for various isotherms

3.2. Diverging Properties near the Critical Point

By definition of an ideal van der Waals fluid the constant volume heat capacity is only a function
of volume and does not diverge at the critical point. The constant pressure heat capacity can be
found from the standard thermodynamic relation
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CP = CV − T

ρ2

(
∂ρ

∂T

)

P

(
∂P

∂T

)

ρ

(2)

CP = CV − T

ρ2

1(
∂T
∂ρ

)
P

ρ

1− bρ
(3)

CP = CV −
8a
27b

2a 1
3b (1− 1/3)2 − 8a

27b

(4)

Where the last step was just inserting the critical values. The constant pressure heat capacity
diverges as the -1 power as the critical point is approached. The thermal conductivity diverges
to the roughly -1/2 power as shown in [14].

4. Convection Mechanisms

The criterion that determine the onset of convection can be derived from physical arguments.
For an incompressible fluid the usual Rayleigh criteria is found. For a compressible fluid the
adiabatic temperature gradient (or Schwarzschild criterion) is found.

4.1. Incompressible Convection

Consider a fluid blob of volume V = a3 contained in the fluid. Perturb the blob upward slightly,
so that it is less dense than its surroundings and experiences a force directed upward due to the
buoyancy. When moving upward, the blob experiences a force directed downward due to the
viscous drag. Write the buoyancy force as

FB = gV δρ (5)

The change in density is assumed to be due to the gradient in temperature

δρ = −ραδT (6)

α = −1
ρ

(
∂ρ

∂T

)

P

(7)

The change in temperature of the blob is due to the temperature of the surroundings changing at
a rate proportional to the temperature gradient times the rate at which this temperature diffuses
into the blob.

δT =
∆T

d
vzC2

a2

κ
(8)

This makes the buoyancy force equal to

FB = −gραa5C2
∆T

dκ
vz (9)

The drag force is given by

FD = C1aµvz (10)

By Newton’s second law, the particle is stationary if the drag force is greater than the buoyancy
force.
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FD > FB (11)

C1aµvz > gραa5C2
∆T

dκ
vz (12)

a = C3d (13)
C1

C2C4
3

>
gαd3∆T

νκ
(14)

Rac >
gαd3∆T

νκ
(15)

This means that the fluid is stable if the Rayleigh number is below some critical Rayleigh number
value.

4.2. Compressible Convection

Consider again a blob of fluid in an inviscid and nonconducting surrounding fluid. The blob
has a density ρblob and the bulk fluid has an equal density ρ. Perturb the fluid upward slightly,
now the blob has a density ρblob + δρblob and the fluid has a density ρ(z + δz). The force on the
particle at its new hight is given by the buoyancy force

FB = gV (ρ(z + δz)− (ρblob + δρblob)). (16)

Expand the density of the fluid in terms of z

FB = gV (
∂ρ

∂z
δz − δρblob). (17)

The fluid is neutrally stable if the force of buoyancy is zero.

∂ρ

∂z
δz = δρblob (18)

The density is written as a function of T and P:

ρ = ρ(T, P ) (19)
∂ρ

∂z
=

(
∂ρ

∂T

)

P

∂T

∂z
+

(
∂ρ

∂P

)

T

∂P

∂z
(20)

Inserting this into Eq. 18 gives

∂ρblob

∂z
=

(
∂ρ

∂T

)

P

∂T

∂z
+

(
∂ρ

∂P

)

T

∂P

∂z
(21)

Using the momentum and adiabatic energy balance (heat transfer term is neglected) we obtain

∂ρblob

∂z
=

Cvρ2 ∂T
∂z

T
(

∂P
∂T

)
ρ

(22)

Simplifying and using some thermodynamic relations,
(

∂ρ

∂T

)

P

∂Tz +
(

∂ρ

∂P

)

T

gρ =
Cvρ2 ∂T

∂z

T
(

∂P
∂T

)
ρ

(23)

∂T

∂z
=

(
1− Cv

CP

) (
∂T

∂P

)

ρ

ρg (24)
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which is an expression for the adiabatic temperature gradient in terms of experimentally accessible
quantities.

5. Governing Equations

The mass balance for an incompressible fluid is

∂ρ

∂t
+∇ · (ρv) = 0. (25)

The Navier-Stokes equations contain the effects of viscosity due to compressibility.

ρ(
∂v

∂t
+ (v · ∇)v) +∇P = µ[∇2v +

1
3
∇(∇ · v)] + ρgk̂ (26)

The conservation of energy is a bit tricky, so I will derive it.

dÛ = TdŜ − PdV̂ (27)

Û = Û(T, V ) (28)

dÛ =
∂Û

∂T V
dT +

∂Û

∂V T
dV̂ (29)

∂Û

∂V T
= T

∂Ŝ

∂V T
− P = T

∂P

∂T V
− P (30)

dÛ = ĈV dT + (T
∂P

∂T V
− P )dV̂ (31)

ĈV dT = −T
∂P

∂T V
dV̂ + TdŜ (32)

ρCV
DT

Dt
= −T

∂P

∂T V
∇ · v +∇ · q + µΦ (33)

Recall the van der Waals equation of state

P =
RρT

1− bρ
− aρ2 (34)

Inserting the van der Waals equation of state and the diverging thermal conductivity gives

Cvρ(
∂T

∂t
+ v · ∇T ) = −(P + aρ2)∇ · v + k∇ · [(1 + Λ(T/Tc − 1)−1/2)∇T ] + µΦ (35)

where Φ is given by:

Φ = (
∂vi

∂xj
+

∂vj

∂xi
− 2

3
δij∇ · v)

∂vi

∂xj
(36)

The parameters a and b are found from their values at the critical point, and Λ is given by [1]

a =
9
8

TcR
ρc

(37)

b =
1

3ρc
(38)

Λ = 3/4 (39)
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5.1. Boundary Conditions

Unlike incompressible convection, the amount of particles put into the cell needs to be specified.
In order to avoid ever calculating an infinite pressure at ρ = 1/b set

max(ρ) = ρmax (40)

as the boundary condition on the density.
The temperature is specified as a combination of temperature and flux. I follow [11] to match

the flux and temperature at the solid - fluid interface. Focus just the bottom solid, the only
difference in the top is that the z coordinate is flipped.

The energy balance in the solid is

Csolidρsolid
∂Tsolid

∂t
= ksolid∇2Tsolid. (41)

The boundary condition at the interface is:

Tsolid = Tfluid (42)

ksolid
∂Tsolid

∂z
= kfluid

∂Tfluid

∂z
. (43)

Expand Tsolid as a static solution plus a deviation:

Tsolid = T ′solid + θ (44)

Static solution for solid:

T ′solid = Tbottom +
ksolid

kfluid
z (45)

Assume the solid plate is infinite and the disturbances decay at − inf, then

Csolidρsolid
∂θ

∂t
= ksolid∇2θ (46)

Θ = θilxx+pt (47)

pΘ =
ksolid

Csolidρsolid

(
∂2

∂z2
− l2x

)
Θ (48)

Θ = A0exp

[
z

√
l2x + p

Csolidρsolid

ksolid

]
(49)

Recall the boundary conditions

ksolid
∂θ

∂z
= kfluid

∂θfluid

∂z
(50)

θ = θfluid (51)

This can solved for the fluid variables and rearranged to give

∂θfluid

∂z

θfluid
=

ksolid

kfluid

√
l2x + p/κ (52)

∂θfluid

∂z
=

ksolid

kfluid
lxθfluid (53)
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Fig. 3. Conductivity of 3He close to the critical point

If the thermal conductivity of the solid is much greater than that of the fluid, then using a
constant temperature is a reasonable approximation. If the reverse is true, then a constant flux
should be imposed.

It was noted earlier that the conductivity of the fluid goes to infinity as the critical point is
approached; this initially lead to the conclusion that all past theoretical work was incorrect. This
was checked by looking up the conductivity of 3He in [14], and this is displayed in figure 3

The conductivities of some common materials are

kCopper = O(1− 100)
W

cm◦K
(54)

kSteel = O(0.01)
W

cm◦K
(55)

kKevlar = O(10−6)
W

cm◦K
(56)

For experiments done by Kogan [12] copper was used, and for this the fixed temperature
boundary (for which the critical Rayleigh number was found) is appropriate. It is assumed that
the boundaries satisfy no-shear, whereas Kogan and others have used no-slip.

Boundary Conditions:

∂T

∂z (z=0)
= Fbottom (57)

∂T

∂z (z=1)
= Ftop (58)

vz(z=0) = vz(z=1) = 0 (59)
∂vx

∂z (z=0)
= 0

∂vx

∂z (z=1)
= 0 (60)
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6. Dimensionless Equations

Because the Prandlt number goes to infinity, a thermal time scale is used. Let t̃ = tk
Cvρcd2 ,

T̃ = T
Tc

, x̃ = x
d , ρ̃ = ρ

ρc
, ã = 9

8 and b̃ = 1/3 where the tilde represents the dimensionless variables.
Dropping the tilde we obtain the following dimensionless equations:

Mass Balance:

∂ρ

∂t
+∇ · (ρv) = 0 (61)

Momentum Balance:

ρ(
∂v

∂t
+ (v · ∇)v) +∇P = σ[∇2v +

1
3
∇(∇ · v)] + σλρk̂ (62)

Energy:

λmρ(
∂T

∂t
+ v · ∇T ) =

−(P + λm(γ − 1)aρ2)∇ · v + λm∇ · [(1 + Λ(T − 1)−1/2)∇T ] + σΦ (63)

where Φ is given by:

Φ = (
∂vi

∂xj
+

∂vj

∂xi
− 2

3
δij∇ · v)

∂vi

∂xj
(64)

Equation of state:

P = λm(γ − 1)(
ρT

1− bρ
− aρ2) (65)

Boundary Conditions:

max(ρ) = ρmax (66)
∂T

∂z (z=0)
= Fbottom (67)

∂T

∂z (z=1)
= Ftop (68)

vz(z=0) = vz(z=1) = 0 (69)
∂vx

∂z (z=0)
=

∂vx

∂z (z=1)
= 0 (70)

where the dimensionless parameters are given by

σ =
µCv

k
(71)

λ =
gCvd3ρ2

c

µk
(72)

m =
C2

vTcµ

kgd
(73)

γ − 1 =
R
Cv

(74)
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Notice that the right hand side of the equation of state could have used a much simpler expression,
this one was chosen so that when a perturbation method solution is done such that λ was expanded
then the first order deviation of λ would drop out of the first order equations.

7. Onset of Convection

7.1. Scaling

Hurle shows that as the thermal conductivity of the fluid over the conductivity of the solid
goes to infinity, the wavenumber of the least unstable mode is zero. Because the convection cell
is much wider than it is high, let

x = ε−1/2ζ (75)

t = ε−2τ (76)

where the time scaling is the standard one and I do not know what motivates it.
Because conservation of volume might dominate when convection starts, it is suggestive to

scale the x and z velocities as

u = ε1/2U (77)

w = εW (78)

Expand the variables as follows:

ρ = ρs + ερ1 + ε2ρ2 + ... (79)

T = Ts + εT1 + ε2T2 + ... (80)

P = Ps + εP1 + ε2P2 + ... (81)

U = Us + εU1 + ε2U2 + ... (82)

W = Ws + εW1 + ε2W2 + ... (83)

7.2. Order 1 (Static Solution)

∂Ps

∂ζ
= 0 (84)

∂Ps

∂z
= σλρs (85)

0 =
∂

∂z
[(1 + Λ(Ts − 1)−1/2)

∂Ts

∂z
] (86)

Ps = λm(γ − 1)(
ρsTs

1− bρs
− aρ2

s) (87)

Order one boundary conditions:

∂Ts

∂z (z=0)
= Fbottom (88)

∂Ts

∂z (z=1)
= Ftop (89)
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max(ρs) = ρmax (90)

The temperature profile has an analytic profile

Ts = c1z + c2 + 2Λ2 − 2Λ(c1z + c2 + Λ2 − 1)1/2 (91)

The density and pressure profiles are solved numerically
(

Ts

1− bρs
+

bTsρs

(1− bρs)2
− 2aρs

)
dρs

dz
=

(
σ

(γ − 1)m
− 1

1− bρs

dTs

dz

)
ρs (92)

Ps =
ρsTs

1− bρs
− aρ2

s (93)

The temperature profile is shown in Figure 4 for an artificial case. Λ = 0 is what is used
for ideal gases and far away from the critical point, and Λ = 10 is a fluid strongly effected by
deviations close to the critical point.

1 1.05 1.1 1.15 1.2
0

0.2

0.4

0.6

0.8

1

T
s

z

Λ = 3/4
Λ = 0

Fig. 4. Static Temperature Profile. The addition of the the Lambda effects cause the temperature profiles to be
nonlinear

The pressure and the density profiles are shown in Figure 5 left and right, respectively. The
effects of the van der Waals gas can easily seen from the pressure profiles. Increasing the attraction
parameter decreases the pressure, whereas increasing the size of the hard spherical particles causes
the pressure to increase. These effects cause the differences in the density profiles.

7.3. Order ε

The governing equations at order ε give:

0 = ρs
∂U1

∂ζ
+ ρs

∂W1

∂z
+ W1

∂ρs

∂z
(94)

∂P1

∂ζ
= σ

∂2U1

∂z2
(95)

∂P1

∂z
= σλρ1 (96)

0 =
∂

∂z
[(1 + Λ(Ts − 1)−1/2)

∂T1

∂z
− 1

2
Λ(Ts − 1)−3/2T1

∂Ts

∂z
] (97)
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Fig. 5. Left: Static Pressure Profile. The addition of the attractive force a, reduces the pressure, whereas the
repulsive forces b cause the pressure to increase. A combination of the two is the linear sum of the two effects.
Right: Static Density Profile. The adverse temperature gradient causes the fluid at the bottom to be less dense
than the fluid above it. Clearly this is an unstable situation.

P1 = λm(γ − 1)
(

ρ1Ts

(1− bρs)2
+

ρsT1

1− bρs
− 2aρsρ1

)
(98)

The order ε boundary conditions are:

W1(z = 0) = W1(z = 1) = 0 (99)(
∂U1

∂z

)

(z=0)

=
(

∂U1

∂z

)

(z=1)

= 0 (100)

(
(1 + Λ(Ts − 1)−1/2)

∂Ts

∂z
− 1

2
Λ(Ts − 1)−3/2T1

∂T1

∂z

)

(z=0)

= 0 (101)

(
(1 + Λ(Ts − 1)−1/2)

∂Ts

∂z
− 1

2
Λ(Ts − 1)−3/2T1

∂T1

∂z

)

(z=1)

= 0 (102)

The solution to these equations is given by

T1 =
f(ζ, τ)

1 + Λ(Ts − 1)−1/2
= f(ζ, τ)g1 (103)

ρ1 = f(ζ, τ)g2 (104)

P1 = λm(γ − 1)f(ζ, τ)g3 (105)

U1 =
λm(γ − 1)

σ

∂f(ζ, τ)
∂ζ

g4 (106)

W1 =
λm(γ − 1)

σ

∂2f(ζ, τ)
∂ζ2

g5 (107)

where g2 through g5 are given by
(
− σ

m(γ − 1)
+

d

dz

(
Ts

(1− bρs)2
− 2aρs

))
g2 + (108)

(
Ts

(1− bρs)2
− 2aρs

)
dg2

dz
= − d

dz

(
ρsg1

1− bρs

)
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g3 =
g2Ts

1− bρs
+

ρsg1

1− bρs
− 2aρsg2 (109)

d2g4

dz2
= g3 (110)

dg5

dz
+

1
ρs

dρs

dz
g5 = −g4 (111)

with boundary conditions

g5(z = 0) = g5(z = 1) = 0 (112)(
dg4

dz

)

(z=0)

=
(

dg4

dz

)

(z=1)

= 0 (113)

where the functions g2 through g5 are found numerically. The boundary value problems are
solved using the shooting method. Integrating across the z domain, the x-component momentum
equation gives the condition that

1∫

0

g3dz = 0. (114)

This trick makes the problem substantially easier, instead of shooting in two directions at the
same time, first an iterative method is used to find g2(z = 0) and once this solution is obtained
an independent shooting method is used to obtain the value of g4(z = 0) = 0 that matches
g5(z = 1) = 0.

For T−Tc

Tc
= 0.01 and ρmax = 0.99 the horizontal and vertical velocities are shown in Figure 6

left and right.
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Fig. 6. Left: Horizontal Perturbation Velocity. Right: Vertical Perturbation Velocity.

7.4. Order ε2

Only the heat equation is necessary, this is

λmρsW1
∂Ts

∂z
= − (

Ps + λm(γ − 1)aρ2
s

) (
∂U1

∂ζ
+

∂W1

∂z

)
+
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λm
[
1 + Λ(Ts − 1)−1/2

] ∂2T1

∂ζ2
+

∂q

∂z
(115)

Inserting the order ε solution and integrating from 0 to 1 eliminates the flux in the z-direction.
It is seen that ∂2f

∂ζ2 is in front of all the terms so this cancels.

0 =

1∫

0

[
λm(γ − 1)

σ
g5ρs

∂Ts

∂z
+

(γ − 1)
σ

(
Ps + λm(γ − 1)aρ2

s

)(
g4 +

∂g5

∂z

)
− 1

]
dz (116)

The expression is then simplified using the order ε governing equations.

λm(γ − 1)
σ

1∫

0

g5[ρs
∂Ts

∂z
− (γ − 1)Ts

1− bρs

∂ρs

∂z
]dz = 1 (117)

The equivalent expression

λm(γ − 1)
σ

1∫

0

g5ρs[
∂Ts

∂z
− (γ − 1)Ts

1− bρs

∂ln(ρs)
∂z

]dz = 1 (118)

is sometimes preferred.
For an experimentalist, the difference in top and bottom temperatures was calculated for a given

temperature of the bottom plate. For a fixed density of ρmax = 0.99, with heat conductivity from
[14], heat capacity from [3], and viscosity from [16] this is shown in Figure 7
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Fig. 7. Difference between top and bottom temperature of apparatus as Tc is approached.

Figure 7 can be compared with Figure 2 in Kogan et. al [12]. Kogan used He3 for constant
temperature and no slip walls. The magnitude of the ∆T close to the critical point for the
simulation is about 20µK whereas the experimental value is closer to 4µK. The slope of the plot
as curve further away from the critical point is also much shallower than that shown in [12], but
this depends highly on the value of viscosity, heat capacity, and conductivity; none of which were
divulged in the paper by Kogan.
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8. Conclusion

A criterion for the onset of convection for a van der Waals fluid was found. It is an average
over the cell of the Rayleigh and Schwarzschild criteria. Numerical solutions have some similar-
ities with experimental data, but are far from quantitative. The boundary conditions used were
constant flux, although most experiments done so far have been justified in their use of constant
temperature, so this work predicts the onset of convection for a situation with walls made of a
low conducting material, such as kevlar. Interesting aspects of this problem that require further
work involve finding the evolution equation for this situation, to see if any patterns occur that
are previously unknown. It would also be interesting to move away from the critical point and
try to model two different phases.
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1 Introduction

Accretion disks radiate a tremendous amount of energy. In these systems the only source of energy
is gravitational energy. Turbulence in the disk converts this gravitational energy into heat and finally
radiation. During this process the angular momentum of the fluid is carried out by turbulent transport,
which allows accretion of the fluid onto the central object. Without turbulence the angular momentum
would not be carried out efficientely enough and the accretion rate would be extremely low. The velocity
profile of an accretion disk is considered to be mostly Keplerian, and the accretion rate is quite low,
which means that the motion of the fluid inside the disk is almost circular. However, circular Keplerian
flows are known to be linearly stable and one may wonder how turbulence is generated in such a system.

If the magnetic field inside the disk is high enough, it has been shown that the magnetorotational
instability (MRI) can destabilize the flow and produce turbulence [3]. This provides at least one
mechanism to drive turbulence in accretion disks. However, it has been shown that the MRI may be
suppressed if the magnetic Prandtl number (ratio of the viscosity over the magnetic viscosity) is not
high enough. In cold proptoplanetary nebulas for instance, the ionization is too low and one has to find
another way to destabilize the flow than the MRI.

This is one of our main motivations to study the combined effects of both rotation and accretion
on a very simple flow : the Taylor-Couette flow with inward suction. Although the astrophysical
relevance of such a flow as a model of an accretion disk is quite limited, it can be used to show that
taking into account both accretion and rotation leads to very different stability propreties of the flow
than considering only rotation (circular flows) or only accretion (accretion onto a central object with a
spherical symmetry). Both the energy stability and the linear stability of the flow are discussed in this
report.

In section 2 we describe the Taylor-Couette flow with suction. The energy stability technique is
described in section 3. Some rigorous bounds on the energy stability limit of the flow are derived in
section 4, and the actual energy stability limit is computed numerically in section 5. Finding bounds
on the energy dissipation of this flow appears to be very challenging. This is discussed in section 6.
Finally the linear stability of the problem is studied in section 7.

2 Formulation of the problem

2.1 Geometry of the problem and boundary conditions

We study the incompressible motion of a Newtonian fluid between two concentric porous cylinders.
In the configuration we focus on, the inner cylinder is maintained in a static position while the outer
cylinder is rotating with constant angular velocity Ω. Let us write R1 and R2 the radii of the inner and
outer cylinders and use cylindrical coordinates (r, θ, z). We assume no slip boundary conditions : the
azimuthal and vertical components of the velocity field vanish at the two cylinders.

To this classical Taylor-Couette flow is added a radial inward suction : the fluid is injected through
the outer cylinder with a flux Φ (volume of fluid injected per unit time and per unit height of cylinder)
and sucked at the inner cylinder. Incompressibility imposes the conservation of the radial flux of fluid
so that the fluid is removed at R1 with the same flux Φ. We consider the simplest problem in which
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the fluid is uniformly injected at R2 and removed at R1, which means that Φ is independant of both
time and θ. If the velocity field is designated as −→u = u−→er + v−→eθ + w−→ez , the boundary conditions are :

−→u (R1, θ, z) = − Φ
2πR1

−→er (1)

−→u (R2, θ, z) = − Φ
2πR2

−→er +R2Ω−→eθ (2)

The incompressibility constraint
−→∇ .−→u = 0 adds two other boundary conditions :

ur(R1) = 0 and ur(R2) = 0 (3)

where the subscript r designate a derivative with respect to r. We assume periodic boundary conditions
in the z direction with a period Lz.

R1

R2
InjectionRotating

cylinder angle

Figure 1: Schematic of the boundary conditions. The outer cylinder is rotating with an angular velocity
Ω and the fluid is injected at the outer boundary with an entry angle Θ

2.2 Dimensionless numbers

The problem we are studying involves the 5 parameters : the two radii R1 and R2, the angular velocity
of the outer cylinder Ω, the flux of injection Φ, and the viscosity of the fluid ν. These parameters can
be expressed with one unit of time and one unit of length. We thus have in this problem 5 − 2 = 3
dimensionless numbers in terms of which the physical results can be expressed :

• The geometrical factor η = R1
R2

. When η goes to one we reach the narrow gap limit where
(R2 − R1) << R1. We expect to find results similar to the slab geometry (plane Couette flow
with suction) in this limit. On the other hand, when η goes to zero, the outer radius R2 goes to
infinity if the inner radius remains constant. In this limit we expect to see some strong effects of
the rotation on the stability of the flow, such as centrifugal effects.
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• The injection angle at the outer cylinder, which we designate as Θ. This angle is linked to the
radial and azimuthal components of the velocity field at the outer boundary :

tan(Θ) =
|U(R2)|
V (R2)

=
Φ

2πR2
2Ω

If tan(Θ) = 0 there is no suction and we recover the classical Taylor-Couette problem. When
tan(Θ) goes to infinity we reach the limit in which there is mostly suction and almost no azimuthal
velocity.

• The azimuthal Reynolds number :

Re =
R2Ω(R2 −R1)

ν

We choose this definition of the Reynolds number so that it matches the definition of the Reynolds
number for the plane Couette flow when η goes to one.

Although only 3 dimensionless numbers are required to describe the physics of the system, it is
useful to introduce also the radial Reynolds number α = Φ

2πν to make the equations more compact.
This number is linked to Re, η and tan(Θ) by the relation :

α =
Re tan(Θ)

1 − η
(4)

2.3 Laminar solution

The steady laminar solution of the problem
−→
Vl = (U(r), V (r), 0) is derived from the Navier-Stokes

equations, together with the incompressibility condition
−→∇.−→Vl = 0. The latter yields :

1
r
(rU)r = 0

U(r) = − Φ
2πr

The azimuthal component of the Navier-Stokes equation is then :

νVrr +
Vr
r

(ν + Ψ) +
V

r2
(Ψ − ν) = 0

with Ψ = Φ
2π . One can look for solutions of this equation in the form V (r) = Arp. We find 2 acceptable

values for p :

p = −1 or p = 1 − α

The solution for V which matches the boundary conditions is then :

V = Ar1−α + B
r with

⎧

⎨

⎩

A = −R2
2Ω

R2−α
1 −R2−α

2

B = R2−α
1 R2

2

R2−α
1 −R2−α

2

Ω

This azimuthal velocity profile is represented in figure 2 for different values of α and η.
When α goes to zero we recover the classical velocity field of the Taylor-Couette flow (with a steady

inner cylinder), which is independant of the viscosity ν. The azimuthal velocity monotonously increases
when r goes from R1 to R2.

However, for nonzero values of the entry angle tan(Θ) and large values of the Reynolds number
(Re tan(Θ) >> 1), going outward from the inner cylinder the azimuthal velocity rapidly increases in
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a boundary layer of thickness δ near the inner cylinder and then decreases from R1 + δ to R2. The
azimuthal velocity profile has a maximum for r = R1 + δ :

Vr(R1 + δ) = 0 ⇔ R1 + δ =
(

B

A(1 − α)

)
1

2−α

=
R1

(1 − α)
1

2−α

For large values of α, the boundary layer is very thin and :

δ

R1

= (α − 1)
1

α−2 − 1 � ln(α)
α

The physical origin of this non monotonous velocity profile is easy to understand : at high Reynolds
number, the motion of the fluid is nearly inviscid. A fluid element injected at the outer boundary with
the azimuthal velocity R2Ω will spiral towards the center. It has to conserve its azimuthal angular
momentum rV (r) during this quasi-inviscid motion :

rV (r) = constant⇒ V (r) =
R2

2Ω
r

The azimuthal velocity of the fluid element increases during this inward movement, but it has to vanish
at the inner boundary. The role of the viscous boundary layer is to dissipate the angular momentum
of the incoming fluid so that the azimuthal velocity goes from Vmax � R2

2Ω

R1
= R2Ω

η to zero at the inner
cylinder. The fact that the azimuthal velocity profile has a high maximum is strongly linked to the
cylindrical geometry of the problem, and this effect disappears in the plane limit η → 1 since Vmax

R2Ω
= 1

η .
One should notice that the asymptotic velocity profile at Re → ∞ is dramatically modified from

tan(Θ) = 0 to tan(Θ) �= 0 : if tan(Θ) = 0 the azimuthal velocity profile is the classical Taylor-Couette
profile which is independant of the Reynolds number. However, if tan(Θ) �= 0 the azimuthal velocity
profile goes like 1

r everywhere inside the gap and the boundary layer becomes infinetely thin in the
limit Re→ ∞. This shows that even if the accretion rate is very low, one cannot neglect it and study
the problem with rotation only. Mathematically this is due to the fact that the limits Re → ∞ and
tan(Θ) → 0 do not commute.
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Figure 2: Azimuthal velocity profiles for different values of the entry angle. (Left : η = 0.5, right :
η = 0.9)

3 Energy stability of the laminar solution

We study in this section the energy stability of the flow, a very strong form of stability in a sense
which will be described precisely in paragraph 3.2. The energy stability technique provides sufficient
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conditions for a flow to be stable, but one should keep in mind that if a flow is not energy stable it can
still be stable.

3.1 Decomposition of the velocity field

The starting point of this technique is to decompose the velocity field −→u into a steady background flow−→
V and a time dependant field −→v . We require both the background flow and the fluctuating field to be
divergence free :

−→u (−→r , t) =
−→
V (−→r ) + −→v (−→r , t) with

{ −→∇ .−→V = 0−→∇ .−→v = 0

Moreover, the background flow has to verify the boundary conditions on −→u as they were specified in
equations 1 and 2 , whereas the fluctuation field verifies the homogeneous boundary conditions −→v =

−→
0

at the two cylinders. Finally, both
−→
V and −→v are periodic in z with the same period Lz. We can

introduce the decomposition of −→u into the Navier-Stokes equation to find :

−→v t + (−→v .−→∇)−→v + (
−→
V .

−→∇)−→v + (−→v .−→∇)
−→
V + (

−→
V .

−→∇)
−→
V +

−→∇(p) = νΔ−→v + νΔ
−→
V (5)

To study the kinetic energy of the fluctuation field we need to take the dot product of this equation
with −→v and integrate over one cell, i.e. over the domain τ = [R1, R2]× [0, 2π]× [0, Lz]. Let us write dτ
the volume element in this domain and define the standard N2 norm as :

||−→f ||2 =
∫

τ
|−→f |2dτ

Then we perform a few integration by parts using the homogeneous boundary condition on −→v to
find :

dt

( ||−→v ||2
2

)

+
∫

τ

−→v .[(−→V .−→∇)
−→
V − νΔ

−→
V ]dτ = −

∫

τ
ν|−→∇−→v |2 + −→v .(−→∇−→

V ).−→v dτ (6)

3.2 Absolute stability

To study the energy stability of the laminar solution we let the background flow be this laminar solution−→
Vl . This makes the integral on the left hand side of equation 6 to vanish and leads to :

{

dt

( ||−→v ||2
2

)

= −H{−→v }
with H{−→v } =

∫

τ ν|
−→∇−→v |2 + −→v .(−→∇−→

Vl ).−→v dτ
H{−→v } is a quadratic form in −→v . If this quadratic form is strictly positive the kinetic energy of

the perturbation −→v is a decreasing function of time. Moreover, we can prove thanks to Gronwall’s
inequality that it will decay at least like an exponential. We should emphasize the fact that we have
not made any assumption on the size of the perturbation (as in linear theory for instance where the
perturbation has to be infinitesimal), which means that any divergence-free perturbation of arbitrary
amplitude which matches the homogeneous boundary conditions will be damped out : a flow for which
H is a positive quadratic form has a very strong form of stability which is called energy stability or
absolute stability.

Let us define the function μ(Re, tan(Θ)) as :

μ(Re, tan(Θ)) = inf
H{−→v }
||−→v ||2 (7)

the infimum being taken over every divergence-free vector field satisfying the homogeneous bound-
ary conditions. The absolute stability is achieved in the region of the (Re, tan(Θ)) plane where
μ(Re, tan(Θ)) > 0. The line μ(Re, tan(Θ)) = 0 is the limit in this plane under which the flow is
absolutely stable.
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3.3 Euler-Lagrange equations

To the variational problem which defines μ corresponds a set of Euler-Lagrange equations. The
quadratic form can be written H{−→v } = −→v .L−→v , L being a linear symmetric operator. This opera-
tor is thus diagonalizable in an orthonormal basis and has real eigenvalues. One can prove that the
infimum in equation 7 is reached when −→v is an eigenvector of L for its lowest eigenvalue λ. The Euler-
Lagrange equations for this problem are then the equations of the eigenvalue problem for the linear
operator L. The divergence free constraint is introduced in H with a Lagrange multiplier as p

−→∇.−→v
which turns into a pressure term in L after an integration by parts. The Euler-Lagrange equations are
then :

λ−→v = −νΔ−→v +
1
2
[(
−→∇−→
Vl ).−→v + −→v .(−→∇−→

Vl )] +
−→∇(p) (8)

together with the incompressibility constraint
−→∇.−→v = 0.

Since this problem is linear and periodic in both θ and z one can decompose −→v into Fourier modes
in these directions and look for the stability of each one of these modes independently. Let us write
one of these modes: −→v = (u(r), v(r), w(r)){r,θ,z}eimθeikz

Inserting this development in the Euler-Lagrange equations and developing
−→
Vl yields :

(−λ+A(r) +
ψ

r2
)u+ Z(r)v + pr − ν

1
r
(rur)r = 0 (9)

Z∗(r)u+ (−λ+A(r) − ψ

r2
)v +

im

r
p− ν

1
r
(rvr)r = 0 (10)

(−λ+A(r) − ν

r2
)w + ikp− ν

1
r
(rwr)r = 0 (11)

where the two functions A and Z are :

A(r) = ν

(

k2 +
m2 + 1
r2

)

Z(r) =
1
2

(rΓr) + 2im
ν

r2

Z∗ is the complex conjugate of Z, and we introduced the angular velocity of the laminar solution
Γ(r) = V (r)

r . The last equation of the system is the incompressibility constraint :

1
r
(ru)r + im

v

r
+ ikw = 0 (12)

To determine wether the flow is energy stable or not, one should solve this system of equations
together with the homogeneous boundary conditions on −→v to find the lowest eigenvalue λ. The flow is
energy stable if λ > 0.

4 Bounds on the energy stability limit

Our strategy in this section is not to solve the variational problem explicitly, but to find some bounds
on the location of the line μ(Re, tan(Θ)) = 0 in the (Re, tan(Θ)) plane. Two different techniques are
used :

• In paragraphs 4.1 and 4.2 we specify a mode for −→v and we study the energy stability limit of this
particular mode. If any mode of perturbation can grow, then the flow is not energy stable. This
means that the energy stability limit of one particular mode of perturbation is an upper bound
on the energy stability limit of the flow for an arbitrary perturbation.
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• In paragraph 4.3 we derive a lower bound on the quadratic form H. As long as this lower bound
remains positive, H is positive and the flow is energy stable. This gives a lower bound on the
energy stability limit, and thus a rigorous sufficient condition for the flow to be absolutely stable.

4.1 Stability of the mode m = 0, k = 0

Let us study perturbations which are axisymmetric and translation invariant in the z direction. Such
perturbations correspond to the mode m = 0 and k = 0. For this mode the mass conservation equation
is simply :

(ru)r = 0 ⇒ u = u(R2)
R2

r

but since −→v satisfies the homogeneous boundary conditions, u(R2) = 0 and u = 0. To find the marginal
energy stability limit we impose λ = 0 in the Euler-Lagrange equations (remember that since L is a
symmetric operator, its eigenvalues are real). The azimuthal component of these equations simplifies
to :

νvrr + ν
vr
r

+ (ψ − ν)
v

r2
= 0 (13)

We can look for power law solutions of this equation in the form v(r) = Arp. This leads to a second
order equation in p :

p2 = 1 − α

We are interested in the case α > 1 which corresponds to the most unstable situation. We obtain two
values of p and the corresponding solution v:

p = ±i√α− 1

v(r) = A cos(
√
α− 1 ln(

r

R2

)) +B sin(
√
α− 1 ln(

r

R2

))

The first boundary condition v(R2) = 0 imposes A = 0 while the second one imposes :

v(R1) = 0 = B sin(
√
α− 1 ln(η)) ⇒ B = 0 or

√
α− 1 ln(η) = qπ, q ∈ Z

∗

The first mode to become non energy stable as α increases is the mode q = 1, and the corresponding
critical value of α is :

αc = 1 +
π2

(ln(η))2

We come back to the (Re, tan(Θ)) plane using equation 4 to find our first upper bound on the energy
dissipation limit :

Re1(tan(Θ)) =
(

1 +
π2

(ln(η))2

)

1 − η

tan(Θ)
(14)

The line Re1(tan(Θ)) has been drawn on figure 4 for several values of the geometrical factor η. This
upper bound shows that whatever the injection angle is, energy stability is lost when the Reynolds
number becomes high enough.

We can explain why the mode (m = 0, k = 0) will grow for large values of α : a small perturbation
v0 = v(t = 0) in the azimuthal velocity field at an initial radius R0 = R(t = 0) will be advected towards
the center by the suction. If α is large enough, the flow is nearly inviscid and the fluid conserves its
angular momentum during the inward motion. Hence the velocity perturbation becomes :

v(R(t), t) = v0
R0

R(t)
, with R(t) ≤ R0

which means that the kinetic energy of this perturbation increases : the mode is not energy stable.
However, when the perturbation is advected all the way to the boundary layer near R1, the viscous
effects dissipate the angular momentum of the perturbation and the perturbation is swept away by the
suction. For this reason we expect to see transient growth for this mode more than an actual instability.
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Figure 3: Expected behaviour of an energy unstable mode for (m = 0, k = 0) : a perturbation at t = 0
(a) is advected by the suction and speeds up (b). When it reaches the boundary layer the fluid loses
its angular momentum and the perturbation is swept away (c).

4.2 Stability of a given velocity profile

Another method to get an upper bound on the energy stability limit is to specify completely the
structure of a mode (i.e. specify m, k, u(r), v(r)) and look for its energy stability limit. The quadratic
form can be developed in cylindrical coordinates as :

H{−→v } =
∫

τ

[

ν|−→∇−→v |2 + (rΓr)uv − ψ

r2
(v2 − u2)

]

dτ (15)

The first term in this integral is the damping due to viscous dissipation. The second term is the only one
which depends on the azimuthal velocity profile of the laminar solution. The last term is proportional
to ψ and is responsible for the upper bound we found in the last paragraph (the azimuthal velocity
profile of the laminar solution did not play any role in the derivation of this bound since there is no
dependance in V in equation 13). In this paragraph we would like to study specifically the effect of the
azimuthal velocity profile of the laminar solution on the energy stability of the flow. We thus choose :

u(r) = −v(r)

which causes the last term of H to vanish. As we are going to evaluate some quadratic quantities we
do not want to use complex notations. Let us write :

−→v =

∣

∣

∣

∣

∣

∣

−v cos(mθ) cos(kz)
v cos(mθ) cos(kz)
w cos(mθ + φθ) cos(kz + φz)

This decomposition leads to :

1
2πLz

∫ θ=2π

θ=0

∫ z=Lz

z=0

|−→∇−→v |2dθdz =
(vr)2

2
+

(wr)2

4
+
(

k2 +
(m+ 1)2

r2

)

v2

2
+
(

k2 +
m2

2r2

)

w2

2
(16)

and w can be computed in terms of v using the incompressibility constraint
−→∇ .−→v = 0 :

−1
r
(rv)r cos(mθ) cos(kz) − m

r
v sin(mθ) cos(kz) − kw cos(mθ + φθ) sin(kz + φz) = 0

Hence φz = π
2
, and :

w2 =
1

k2r2
(r2v2

r + 2rvvr + (m2 + 1)v)

Moreover we can notice that (wr)2 = ((w2)r)2

4w2 , with :

(w2)r =
2

k2r2

[

−(m2 + 1)
v2

r
+ r(vr)2 +m2vvr + rvvrr + r2vrvrr

]
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Figure 4: The three bounds on the energy stability limit. Re1 is a straight line which decreases like
tan(Θ)−1. The bound Re2 is out of the picture for η = 0.02, and makes the right angle shape in the
upper left corner for η close to 1. The lower bound Re3 is the lowest curve for every value of η. (dashed
line : η = 0.02, dash-dotted line : η = 0.9, dotted line : η = 0.99, solid line : η = 0.999)

The energy stability limit of this mode is reached when H{−→v } = 0. Using equation 16, this energy
stability limit becomes :

∫ r=R2

r=R1

[

(vr)2 +
(wr)2

2
+ (1 +m)2

v2

r2
+
m2

2
w2

r2
+ k2v2 + k2w

2

2
− Re

1 − η

rΓr
2R2

2Ω
v2

]

rdr = 0

where every term can be expressed in terms of v, vr and vrr. We chose v(r) to be the simplest velocity
profile that satisfies the boundary conditions on both u and v (since u = −v) :

v(r) = A(r −R1)2(r −R2)2

All the integrals in equation 17 can be computed and we are left with an implicit equation in Re,
tan(Θ) and η which can be solved numerically. The best upper bound that we find with this method
is for (k = π

R2−R1
,m = 0). This mode corresponds to the well-known Taylor vortices. It is interesting

to see that although the flow without suction is a stable configuration of the Taylor-Couette flow, a
little bit of suction allows Taylor vortices to grow (they will at least have a transcient growth). The
corresponding upper bound on the energy stability limit is called Re2(tan(Θ)) and has been drawn for
several values of η on figure 4. This bound goes to infinity for a finite value of the injection angle Θ.
Around this value of Θ the quantity Γr becomes negative in a large region of the gap, so that all the
terms in equation 17 are positive and the equation does not admit a solution anymore.
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4.3 Lower bound on the energy stability limit

Let us define :
F{−→v } =

∫

τ
(rΓr)uv − ψ

r2
(v2 − u2)dτ

To find a lower bound on H one has to consider the fact that −→v cannot be arbitrarily large and
match the homogeneous boundary conditions without having large gradients too. We will thus try to
find a lower bound on F (which can be negative!) in terms of ||−→∇−→v ||2. First of all we can get rid of
the positive term ψ

r2u
2 in F . Using the inequality |uv| ≤ 1

2
[1cu

2 + cv2] which is valid for any c > 0, we
get:

F{−→v } ≥ −
∫

τ

|rΓr|
2

(

1
c(r)

u2 + c(r)v2

)

+
ψ

r2
v2dτ = −

∫

τ
u2

( |rΓr|
2c

)

+ v2

(

ψ

r2
+ c

|rΓr|
2

)

dτ

c(r) is chosen in such a way that the coefficients of u2 and v2 are equal :

|rΓr|
2c

=
ψ

r2
+ c

|rΓr|
2

⇒ c2 +
2ψ

r3|Γr|c− 1 = 0

⇒
⎧

⎨

⎩

c(r) = ζ
2

(√

1 + 4
ζ2

− 1
)

with ζ = 2ψ
r3|Γr|

This choice of c leads to :

F{−→v } ≥ −
∫

τ

|rΓr|
2c

(u2 + v2)dτ = −
∫

τ

ψ

2r2

(
√

1 +
4
ζ2

+ 1
)

(u2 + v2)dτ (17)

We now use the fundamental theorem of calculus and the Schwartz inequality to get :

|v(r)| =
∣

∣

∣

∣

∫ r

R1

1√
r̃

√
r̃vr(r̃)dr̃

∣

∣

∣

∣

≤
√

∫ r

R1

1
r̃
dr̃

√

∫ r

R1

|vr(r̃)|2r̃dr̃

The same technique can be applied to u and yields :
⎧

⎪

⎪

⎨

⎪

⎪

⎩

|u| ≤
√

ln
(

r
R1

)√

∫ r
R1

|ur(r̃)|2 r̃dr̃

|v| ≤
√

ln
(

r
R1

)√

∫ r
R1

|vr(r̃)|2 r̃dr̃

Finally :

u2 + v2 ≤ ln
(

r

R1

)
∫ r

R1

(

|ur(r̃)|2 + |vr(r̃)|2
)

r̃dr̃ (18)

If we use this inequality in 17 the integrals separate and we find :

F{−→v } ≥ −
∫ R2

R1

ψ

2r
ln
(

r̃

R1

)(
√

1 +
4
ζ2

+ 1
)

dr̃

∫

θ

∫

z

∫ r

R1

(

|ur(r̃)|2 + |vr(r̃)|2
)

r̃dr̃dθdz

hence :

F{−→v } ≥ −
∫ R2

R1

ψ

2r
ln
(

r̃

R1

)(
√

1 +
4
ζ2

+ 1
)

dr̃ ||−→∇−→v ||2

The lower bound on H is finally :

H{−→v } = ν||−→∇−→v ||2 + F{−→v } ≥
[

ν −
∫ R2

R1

ψ

2r
ln
(

r̃

R1

)(
√

1 +
4
ζ2

+ 1
)

dr̃

]

||−→∇−→v ||2
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So that H is necessarily positive if :

ν −
∫ R2

R1

ψ

2r
ln
(

r̃

R1

)(
√

1 +
4
ζ2

+ 1
)

dr̃ ≥ 0

If we define r = R2x and compute ζ(x) for the laminar azimuthal velocity profile found in section 2.3,
the lower bound on the energy stability limit becomes :

α

2

∫ 1

η

ln
(

x
η

)

x

(
√

1 +
4
ζ2

+ 1
)

dx = 1 (19)

with ζ(x) = 2 tan Θ
|η2+α − 1|

|αx2+α + 2η2+α| (20)

To this lower bound corresponds a line Re3(tan(Θ)) which has been drawn for several values of η
on figure 4. Under this line the flow is absolutely stable.

5 Numerical computation of the energy stability limit

In a study on the plane Couette flow with suction, Doering Spiegel and Worthing [1] found that the
flow was absolutely stable if the injection angle was above a critical value Θc � 3o. At this value of
the entry angle the energy stability limit goes to infinity. In the cylindrical problem, the upper bound
found in 4.1 clearly discards the possibility of such a behaviour. One may wonder how the shape of the
energy stability limit will evolve from the plane Couette limit (η → 1) to a cylindrical geometry. To
answer this question, we solved numerically the eigenvalue problem in 3.3 to compute the actual energy
stability limit.

5.1 Simplification of the system of equations

As a first step we can reduce as much as possible the number of variables and equations in the system.
Taking the divergence of the vectorial form of the Euler-Lagrange equation and using the incompress-
ibility constraint we get :

Δp = − 1
2r

(r2Γrv)r − im

2r
(rΓr)u+

ψ

r2

[

−ur +
u

r
+
imv

r

]

(21)

We can apply the operator Δ to equation 9 and use the relation :

Δ(pr) = (Δp)r +
pr
r2

− 2m2

r3
p

to remove Δ(pr). the remaining terms in p are (Δp)r, pr and p. They can be expressed in terms of u,
v and their derivatives using equations 21, 9 and 10. This leads to the first differential equation of a
system of two equations in u and v :

λ

[−2im
r2

v + urr +
1
r
ur − (k2 +

m2 + 1
r2

)u
]

= (−ν)urrrr +
(

−2ν
r

)

urrr +
(

2A+
ν

r2

)

urr (22)

+
(

2A
r

− ν

r3
+ 2Ar − imΓr

2

)

ur +
(

Arr +
Ar
r

−A(k2 +
m2 + 1
r2

) − imΓrr
2

− 2im
r2

Z∗
)

u+
(

4imν
r2

)

vrr

+
(

−4imν
r3

)

vr +
(

6imν
r4

− Z(k2 +
m2

r2
) − 2imA

r2

)

v + ψ

[

−
(

k2

r2
+
m2

r4

)

u+
im

r3
vr − im

r4
v

]

To get the second equation of the system w is expressed in terms of u and v using the mass conservation
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equation 12. Inserting w in equation 11 we get p, which can be replaced in equation 10. This leads to
the equation :

λ

[

− im
r
ur − im

r2
u+ (k2 +

m2

r2
)v
]

=
(

imν

r

)

urrr +
(

2imν
r2

)

urr +
(

− im
r
A

)

ur (23)

+
(

k2Z∗ − im

r2
A+

2imν
r4

)

u+
(

−ν(k2 +
m2

r2
)
)

vrr +
(

ν

r
(−k2 +

m2

r2
)
)

vr

+
(

A(k2 +
m2

r2
) − 2νm2

r4
+
k2ψ

r2

)

v

This system has derivatives up to the fourth order in u and to the second order in v. We have four
boundary conditions on u and two on v, which is enough to solve it.

5.2 Numerical resolution of the eigenvalue problem

The system of equation was solved using a finite-difference method. If N is the resolution, the functions
u and v are discretized on the domain [R1, R2] as :

u = (u1, u2, ..., uN−1)
v = (v1, v2, ..., vN−1)

with un = u(r = R1 + nh) and h = R2−R1
N . The eigenvalue problem is then replaced by a difference

equation using the central difference approximations to the derivatives. Each derivative can be written
as a matrix which coefficients can be determined from the four following Taylor developments :

f(x± h) = f(x) ± hf (1)(x) +
h2

2
f (2)(x) ± h3

6
f (3)(x) +

h4

24
f (4)(x) +O(h5)

f(x± 2h) = f(x) ± 2hf (1)(x) + 2h2f (2)(x) ± 4
3
h3f (3)(x) +

2
3
h4f (4)(x) +O(h5)

We get the approximations of the derivatives making linear combinations of these four equalities. For
instance, we get for the first derivative :

f ′(R1 + nh) =
f(R1 + (n+ 1)h) − f(R1 + (n− 1)h)

2h
if 2 ≤ n ≤ N − 2

f ′(R1 + h) =
f(R1 + 2h) − f(R1))

2h
=
f(R1 + 2h)

2h

f ′(R1 + (N − 1)h) =
f(R2) − f(R1 + (N − 2)h)

2h
= −f(R1 + (N − 2)h)

2h

We used the boundary conditions to determine the extreme coefficients of the matrix. The computation
of the matrices of the third and fourth order derivatives requires the use of ’ghost values’ which are
values of the functions on points out of the domain, such as f(R1 − h) or f(R2 + h). These quantities
can be expressed in terms of values of the function inside the domain using the boundary conditions on
the derivatives of f . For instance :

f ′(R1) = 0 =
f(R1 + h) − f(R1 − h)

2h
⇒ f(R1 − h) = f(R1 + h)
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The matrices of the derivatives are tridiagonal and pentadiagonal :

Dr =
1
2h

⎛

⎜

⎜

⎜

⎜

⎝

0 1 0

−1
. . . . . .
. . . . . . 1

0 −1 0

⎞

⎟

⎟

⎟

⎟

⎠

Drr =
1
h2

⎛

⎜

⎜

⎜

⎜

⎝

−2 1 0

1
. . . . . .
. . . . . . 1

0 1 −2

⎞

⎟

⎟

⎟

⎟

⎠

Drrr =
1

2h3

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−1 −2 1 0

2 0
. . . . . .

−1
. . . . . . . . . 1
. . . . . . 0 −2

0 −1 2 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Drrrr =
1
h4

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

7 −4 1 0

−4 6
. . . . . .

1
. . . . . . . . . 1
. . . . . . 6 −4

0 1 −4 7

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Each equation of the system can be written as a linear combination of these matrices applied to u
or v. The whole system can finally be written :

MX = λNX

where X = (u1, . . . , uN , v1, . . . , vN ) and M and N are two 2x2 block matrices corresponding to the two
sides of the equations. Each block represents the operator acting on one of the functions (u or v) in
one of the two equations.

The eigenvalue problem MX = λNX can then be solved with the software MATLAB.

5.3 From plane Couette to cylindrical Couette

The energy stability limit has been drawn for several values of η on figure 5.3. When η is close to one
and for very small values of the entry angle the energy stability limit remains constant at Re � 82.
This is the energy stability limit of the plane Couette flow. When θ � 3o the energy stability limit
increases tremendously (several orders of magnitude), but cannot go to infinity as in the plane geometry.
The cylindrical geometry allows some modes to grow. When tan(Θ) � 0.3 the most unstable mode is
(m = 0, k = 0) and the energy stability limit coincides with the upper bound Re1.

When η goes to zero, the behavior of the energy stability limit is totally different from the plane
geometry. This limit corresponds to the situation where the outer radius goes to infinity while the inner
radius is kept constant. The energy stability limit is then a monotonically decreasing function of the
injection angle. The initial Reynolds number Re(Θ = 0) is higher in this case because we have chosen
a definition of the Reynolds number based on the width of the gap. This definition is not relevant
anymore when η → 0 and should be replaced by Re′ = R2

1Ω

ν = η2

1−ηRe since R2 goes to infinity.

6 Bounds on the energy dissipation

The first bounds on turbulent quantities were introduced by Howard [2] to shed some light on Malkus
assumption that turbulent convection would maximize the heat flux in turbulent convection [8]. Since
then some related techniques have been developed such as the background method [6] [7]. Although the
background method can be applied to any kind of geometry, people have mostly concentrated on shear
layers and plane flows. Constantin [10] used the method to compute a bound on the energy dissipation
for the Taylor-Couette flow without suction and Doering, Spiegel and Worthing successfully found a
bound on the energy dissipation in a shear layer with suction. However, in the Taylor Couette problem
with suction it appears a lot more challenging to find a bound, and we will show in this section that
the background method in its usual formulation cannot be used.
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Figure 5: Energy stability limit of the Taylor-Couette flow with suction for different values of η.

6.1 The background method

The method uses a decomposition of the velocity field into a steady velocity profile and a time-dependant
fluctuation field as in 3.1. The difference with the energy stability analysis is that the background profile
remains to be chosen and is not necessarily the laminar solution. We can perform an integration by
parts to write :

∫

τ

−→v .Δ−→
V dτ = −

∫

τ
(
−→∇−→
V ).(

−→∇−→v )dτ = −1
2

∫

τ
|−→∇−→u |2 − |−→∇−→

V |2 − |−→∇−→v |2dτ

where the last equality comes from:

|−→∇−→u |2 = |−→∇−→
V |2 + |−→∇−→v |2 + 2(

−→∇−→v ).(
−→∇−→
V )

Equation 6 can then be written as :

dt

( ||−→v ||2
2

)

+
ν

2
||−→∇−→u ||2 =

ν

2
||−→∇−→

V ||2 − I (24)

with I =
∫

τ

ν

2
|−→∇−→v |2 + −→v .(−→∇−→

V ).−→v + −→v .((−→V .−→∇)
−→
V )dτ (25)

The last term in I is linear in −→v which is not desirable in this procedure. To cancel this term we
introduce another decomposition :

−→v =
−→
W (−→r ) + −→w (−→r , t)
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where
−→
W and −→w are both divergence-free and verify the homogeneous boundary conditions.

−→
W is a

steady flow whereas −→w is time dependant. This decomposition is inserted in I to find :

I = I{−→w } +
ν

2
||−→∇−→

W ||2 +
∫

τ

−→
W.(

−→∇−→
V ).

−→
W +

−→
W.((

−→
V .

−→∇)
−→
V )dτ + L{−→w }

where :

I{−→w} =
∫

τ

ν

2
|−→∇−→w |2 + −→w .(−→∇−→

V ).−→wdτ

L{−→w } =
∫

τ

−→w .
[

−νΔ−→
W + (

−→∇−→
V ).

−→
W + (

−→
W.

−→∇)
−→
V + (

−→
V .

−→∇)
−→
V
]

dτ

−→
W is then chosen to cancel the linear term in −→w , that is L{−→w } = 0 for any vector field −→w that is
divergence-free and satisfies the homogeneous boundary conditions (this does not necessarily imply
that the bracket inside L has to be zero). If such a vector field

−→
W is chosen, it verifies L{−→W} = 0 which

leads to:

I{−→W} = −1
2

∫

τ

−→
W.((

−→
V .

−→∇)
−→
V )dτ

The quantity I then becomes :

I = I{−→w } +
1
2

∫

τ

−→
W.((

−→
V .

−→∇)
−→
V )dτ

This can be inserted in equation 24 to give :

dt(||−→v ||2) + ν||−→∇−→u ||2 = ν||−→∇−→
V ||2 −

∫

τ

−→
W.((

−→
V .

−→∇)
−→
V )dτ − 2I{−→w }

where I{−→w} is a quadratic form in −→w . It is the same quadratic form as for the energy stability analysis
with ν replaced by ν

2
. If we average this equation over a long time the left hand side becomes the

average energy dissipation rate per unit mass (the time derivative averages to zero).
Here is the essence of the bounding procedure : If the background velocity profile is chosen so that

I is a positive quadratic form, then this quadratic form can be dropped, which leads to the inequality :

ν||−→∇−→u ||2 ≤ ν||−→∇−→
V ||2 −

∫

τ

−→
W.((

−→
V .

−→∇)
−→
V )dτ

where the overline represents a long time average.
Usually the background profile is assumed to depend on the same coordinates as the laminar solution,

and to verify the symmetries of the problem. For instance in a shear layer, the background is chosen
as a function of the depth only. It seems natural to choose it independent of the horizontal coordinates
since there is an invariance to any translation in these directions. For a cylindrical Couette flow we have
an invariance to any translation in the θ and z directions. We are then tempted to chose an azimuthal
background velocity profile which depends on r only, as for the laminar solution. This is a successful
strategy for the classical Taylor Couette problem.

However, here is the problem that arises for the Taylor-Couette flow with suction : we find an upper
bound on the energy stability limit of the flow studying the mode (m = 0, k = 0). The derivation of this
upper bound does not involve the azimuthal velocity profile. This means that for any injection angle
Θ, and for any Reynolds number greater than 2Re1(Θ, η), the quadratic form I will not be a positive
quadratic form, whatever function of r is chosen to be the background velocity profile. Therefore we
cannot produce a bound on the energy dissipation with a background velocity depending only on r.

In studies on convection or shear layers [6] [7], the background velocity profiles happen to be very
close to the average velocity profile of the flows at high Reynolds numbers, exhibiting very thin boundary
layers near the walls and uniform profiles in the interior of the flow. This reinforces the common
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belief that the symmetries of the problem which are lost at relatively high Reynolds numbers through
instabilities are recovered on average at even higher Reynolds numbers. The fact that we cannot choose
a background velocity profile for the Taylor-Couette flow with suction which verifies the symmetries of
the problem may raise the question of whether or not these symmetries are recovered at any Reynolds
number.

7 Linear stability analysis

To understand how the symmetries of the system may be broken, as well as to complete the picture
from the energy stability analysis, we shall now study the linear stability of the system.

7.1 Non-axisymmetric disturbances

Min and Lueptow [9] studied the linear stability of Taylor-Couette flow with suction, but their analysis
includes only axisymmetric disturbances. They found that an inward flow has always a stabilizing
effect and increases the critical Taylor number at which Taylor vortices appear. In the situation we
are studying the inner cylinder remains steady. Without suction this configuration corresponds to a
stable distribution of angular momentum and the Rayleigh criteria ensures that the flow is stable to
axisymmetric perturbations. Since an inward flow has a stabilizing effect on these perturbations, we
expect the flow to be linearly stable to any axisymmetric perturbation at any Reynolds number and
any value of the entry angle Θ. For this reason our linear stability analysis focuses on non-axisymmetric
perturbations. Such a perturbation breaks the invariance to translations in the θ direction.

In most instability mechanisms, one symmetry of the initial problem is broken at the onset of the
primary instability whereas the other ones are broken through secondary instabilities. Since in our
problem the most unstable perturbation has to break the invariance to translations in the θ direction,
we expect it not to break the invariance to translations in the z direction. The most unstable mode
would then have (m �= 0, k = 0). These are the modes of perturbation that we consider in the following
linear stability analysis.

7.2 Linearization of the equations

We use the decomposition −→u =
−→
Vl + −→v and write a mode of perturbation as:

−→v = (u(r), v(r), w(r)){r,θ,z}e−λteimθ

where λ is now a complex number. We can set w = 0 and remove the vertical component of the
Navier-Stokes equation without loss of generality. The linearization of the two other components leads
to :

−νurr − ψ + ν

r
ur +A1u− λu+ Z1v + pr = 0 (26)

−νvrr − ψ + ν

r
vr +A2v − λv + Z2u+

imp

r
= 0 (27)

with :

A1 = im
V

r
+
ψ

r2
+ ν

m2 + 1
r2

A2 = im
V

r
− ψ

r2
+ ν

m2 + 1
r2

Z1 =
2imν
r2

− 2V
r

Z2 = Vr +
V

r
− 2imν

r2
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The mass conservation equation becomes :

imv + (ru)r = 0 (28)

From equation 28 v can be expressed in terms of u. This expression of v is then inserted in equation
27 to get p in terms of u. p is differentiated with respect to r and injected into equation 26. This leads
to a fourth order ODE in u :

[

νr2
]

urrrr + [(6ν + ψ)r] urrr +
[

ν(6 −m2) + 3ψ − r2A2

]

urr (29)

+
[

−ψ + ν

r
m2 + imrZ1 + imrZ2 − r2(A2)r − 3rA2

]

ur

+
[

m2A1 + imZ1 + imZ2 + imr(Z2)r − r(A2)r −A2

]

u = λ
[−r2urr − 3rur + (m2 − 1)u

]

u and its first derivative must vanish at the 2 boundaries, which is enough boundary conditions to solve
this equation.

7.3 Numerical computation of the linear stability limit

Equation 29 is an eigenvalue problem which can be solved numerically with the method described in
5.2. The linear stability limit is much higher than the energy stability limit in terms of Reynolds
number and α. For this reason a very high resolution is needed to determine it. The finite resolution of
the computation leads to a maximal value of α above which the linear stability limit cannot be easily
determined.

The linear stability limit of different modes was represented on figures 6 and 7 for η = 0.5 and
η = 0.9. The energy stability limit was added to the picture to make the comparison easier. There is
a linear instability at small injection angles. The most unstable modes have m ∼ R2

R2−R1
= 1

1−η , which
corresponds to circular cells between the two cylinders.

At a certain value of the injection angle the linear stability limit seems to go to infinity. An analytical
proof of this remains to be established. Comparing the limits obtained for the two values of η we see
that the more cylindrical the geometry, the more linearly unstable the flow. From η = 0.9 to η = 0.5,
the minimum value of the critical Reynolds number goes from approximately 104 to 2.103, and the
maximum value of the injection angle that allows a linear instability increases by almost an order of
magnitude. To emphasize the fact that this linear instability is found in the bulk of the flow (and not
in the boundary layer as in the plane Couette flow with suction), a few pictures of the unstable mode
at the onset of instability were added. For η = 0.9, the mode consists in only one row of rotating cells
in the width of the gap if the injection angle is small. When the injection angle is closer to its critical
value, this row splits into two rows of counter-rotating cells. For η = 0.5, we observe that the cells are
closer to the outer boundary (the injection boundary) when the injection angle is far from the most
unstable injection angle. At the most unstable value of the injection angle the cells occupy the whole
width of the gap.

One should notice that in the limit of no suction and rotation only (tan(Θ) → 0), the linear stability
limit goes to infinity and the flow is stable. On the other hand, if there is only suction and no rotation
(Re → 0, α → ∞), we lose the instability too. This means that the linear instability exists only when
both rotation and accretion are taken into account. It is lost if only one of these two ingredients is
considered.
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Figure 6: Upper picture : Linear stability limit of several modes for η = 0.9 (thick dashed line :
m = 1, dashed line : m = 3, dash-dotted line : m = 10, solid line : m = 30, dotted line : m = 100).
The energy stability limit has been added to make the comparison easier (thick solid line). Lower left
: Unstable mode at the onset of instability for m = 10, tan(Θ) = 0.003, η = 0.9. One row of rotating
cells can be seen in the width of the gap. Lower right : Unstable mode at the onset of instability for
m = 10, tan(Θ) = 0.01, η = 0.9. Two rows of counter-rotating cells can be seen in the width of the
gap.
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Figure 7: Upper picture : Linear stability limit of several modes for η = 0.5. In this more cylindrical
geometry, linear instability is found for lower values of the Reynolds number and up to higher values
of the injection angle. (solid line : m = 1, dashed line : m = 2, dash-dotted line : m = 3, dotted line :
m = 4, thick solid line : energy stability limit). Lower left : Unstable mode at the onset of instability
for m = 3, tan(Θ) = 0.008, η = 0.5. The cells are close to the injection boundary. Lower right :
Unstable mode at the onset of instability for m = 3, tan(Θ) = 0.08, η = 0.5. The cells are in the whole
width of the gap.
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8 Conclusion

The actual energy stability limit has been computed for different configurations of the Taylor-Couette
flow with suction : this flow is not energy stable provided that the Reynolds number is high enough,
and we cannot rule out the possibility of a non-linear instability in such a flow. Moreover, this flow
can be linearly unstable for certain values of the parameters : the combined efffects of rotation and
accretion lead to a new linear instability which does not exist if only one of these ingredients is present.

This could lead to a scenario for a non-linear instability in an accretion disk : Let us consider a
rotating disk without accretion. This disk is linearly stable but not energy stable. If it is subject to a
perturbation, this perturbation could grow and carry out a little bit of angular momentum. This would
drive accretion. Now that both rotation and accretion are present, the flow may not be linearly stable
anymore and could become turbulent.

However, the flow we studied is very far from being a good model of an accretion disk and further
work remains to be done to see if the results derived here could be applied to an actual accretion disk.
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Nonlinear Ekman Dynamics for an Advective Flow

R.W.Dell, Supervised by J. Pedlosky

GFD Summer School, 2007

1 Introduction

Fridtjof Nansen, the famous Norwegian explorer, observed from the deck of his ship in the Arctic Ocean that
icebergs mysteriously tended to drift at a 45◦ to the wind. The young graduate student Walfrid Ekman set
out to explain this observation in his 1902 doctoral dissertation, and found it to be the combined effects of
friction at the ocean’s surface and the rotation of the Earth [2]. In explaining Nansen’s observation, Ekman
gave a general mathematical description of horizontal frictional boundary layers in rotating frames, now
commonly called Ekman layers. These boundary layers are ubiquitous in geophysical fluid dynamics, at the
bottom of the atmosphere, in the ocean surface layer, and probably at the ocean bottom. The critical feature
of these boundary layers is that the combination of rotation and friction induces flow across lines of constant
pressure, causing convergence in some regions and divergence in others. Where there is convergence, fluid
is forced vertically out of the boundary layer, a phenomenon known as Ekman pumping. This small vertical
velocity from the surface Ekman layer of the ocean is thought to drive much of the ocean circulation by
compressing or stretching vertical vortex tubes and so inducing northward or southward flow.

Ekman derived his boundary layer solution for linear flows, neglecting the effects of momentum advection.
Because the Ekman layer is so central to oceanic circulation, the details of its physics are of great interest
to the fluid dynamics community, and several efforts have have been made to understand its nonlinear
behavior. In 1964, Benton et al examined the nonlinear modifications to the Ekman layer for a flow with
locally uniform shear far from the side boundaries, calculating the corrections numerically to a fifth order
perturbation expansion [1]. Inspired by this example, Eliassen (1971) showed that nonlinear effects tended
to suppress the pumping of fluid out of the boundary layer in the center of a cyclonic vortex [3]. This result
was of considerable interest, as it has been observed on many occasions that the center of cyclones in the
atmosphere, like the eyes of hurricanes, tend to be relatively cloud–free. If the Ekman layer was inducing
downwelling—sucking fluid into the boundary layer instead of pumping it out—this might explain the clear–
eyed cyclones. However, in 2000 Hart calculated analytically the nonlinear corrections to the Ekman pumping
up to five orders of Rossby number, a small nondimensional parameter indicating the strength of rotation
[4]. He was able to show that Eliasson’s result was in fact an artifact of the assumption of locally uniform
shear adopted from Benton et al. As a result, it was unlikely that Ekman dynamics explained the paucity
of clouds in cyclone centers. However, Hart also restricted himself to unidirectional flows, that is flows that
do not vary in the along–stream direction and where one of the velocity components is zero.

All of these authors restrict their discussion to a limited class of flows, usually unidirectional flows. This
simplifies the computation significantly, but it excludes important physics: the effects of curvature of flows
and the advection of material properties such as vorticity. We expect the lowest order nonlinear correction
to the Ekman pumping velocity to be proportional to the advection of vorticity, so these authors may have
excluded large effects even though they calculated very high–order corrections. To redress the oversight
of previous studies, I will here calculate the weakly nonlinear form of the Ekman layer, and discuss the
effect that including vorticity advection has on the structure of the boundary layer and the vertical velocity
induced. I confine myself to discussing a case with a no–slip boundary condition, analogous to the ocean
bottom. Though this is the less physically relevant case for ocean circulation, it is mathematically simpler
and so a good starting point. I’ll begin by reviewing the linear Ekman layer in Section 2, followed by the
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expansion in Rossby number in Section 3, including the weakly nonlinear solution for the Ekman pumping.
Section 4 will discuss an illustrative example to help build intuition. Section 5 contains an alternative
derivation of the weakly nonlinear solution for the illustrative example. I will conclude in Section 6.

2 The Linear Ekman Layer

We begin with the dimensionless Navier–Stokes equations for a homogeneous, steady flow:

ε

(
u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
− v = −∂p

∂x
+
E

2

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
(1)

ε

(
u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
+ u = −∂p

∂y
+
E

2

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
(2)

ε

(
u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= −∂p

∂z
+
E

2

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
(3)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (4)

In these equations, our dimensionless parameters are the Rossby number, ε = U0
2ΩL , which gives the relative

strength of advection and rotation, and the Ekman number, E = ν
ΩL2 , giving the relative strength of friction

and rotation, where Ω is the rotation rate of the frame, ν is the frictional parameter, L is a length scale, and
U0 is a velocity scale taken from the flow far from the boundary. Far from the boundary, the flow is assumed
to be inviscid, and both E and ε can be considered small. To lowest order, the above system of equations
then becomes:

−v = −∂p
∂x

+u = −∂p
∂y

0 = −∂p
∂z

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

These are the standard equations of geostrophic balance, where rotational and pressure effects balance each
other in the horizontal. We will assume that the flow far from the boundary always satisfies these equations,
and we will denote the geostrophically balanced far field velocities U(x, y) and V (x, y). The continuity
equation (4) implies that wz = 0. If we imagine that somewhere there is a horizontal boundary that fluid
cannot penetrate, we know that w = 0 everywhere.

Though the far field is inviscid, there must be a region near the boundary in which the frictional terms
are of the same order as the rotational terms. Therefore, we introduce a new stretched coordinate ζ, defined
so that the region where friction is important—the boundary layer—is the region where ζ is O(1):

z =
√
Eζ (5)

Assume z = ζ = 0 on the bottom boundary. Therefore:

∂

∂z
=

1√
E

∂

∂ζ
;

∂2

∂z2
=

1
E

∂2

∂ζ2

We similarly introduce a rescaled vertical velocity W so that:

∂w

∂z
=
∂W

∂ζ
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Our equations of motion (1) – (4) then become:

ε

(
u
∂u

∂x
+ v

∂u

∂y
+W

∂u

∂ζ

)
− v = −∂p

∂x
+

1
2

(
E
∂2u

∂x2
+ E

∂2u

∂y2
+
∂2u

∂ζ2

)
ε

(
u
∂v

∂x
+ v

∂v

∂y
+W

∂v

∂ζ

)
+ u = −∂p

∂y
+

1
2

(
E
∂2v

∂x2
+ E

∂2v

∂y2
+
∂2v

∂ζ2

)
εE

(
u
∂W

∂x
+ v

∂W

∂y
+W

∂W

∂ζ

)
= −∂p

∂ζ
+
E

2

(
E
∂2W

∂x2
+ E

∂2W

∂y2
+
∂2W

∂ζ2

)
∂u

∂x
+
∂v

∂y
+
∂W

∂ζ
= 0

The scale over which frictional effects are important has now been included in our governing equations, so
we can neglect all terms that are still of order E. This gives:

ε

(
u
∂u

∂x
+ v

∂u

∂y
+W

∂u

∂ζ

)
− v = −∂p

∂x
+

1
2
∂2u

∂ζ2
(6)

ε

(
u
∂v

∂x
+ v

∂v

∂y
+W

∂v

∂ζ

)
+ u = −∂p

∂y
+

1
2
∂2v

∂ζ2
(7)

0 = −∂p
∂ζ

(8)

∂u

∂x
+
∂v

∂y
+
∂W

∂ζ
= 0 (9)

To solve these equations, we assume that the Rossby number ε is small and expand all of our physical
quantities in it:

u = u0 + εu1 + ε2u2 + . . .

p = p0 + εp1 + ε2p2 + . . .

...

To O(1), equations (6) – (9) are:

−v0 = −∂p0

∂x
+

1
2
∂2u0

∂ζ2
(10)

u0 = −∂p0

∂y
+

1
2
∂2v0

∂ζ2
(11)

0 = −∂p0

∂ζ
(12)

∂u0

∂x
+
∂v0

∂y
+
∂W0

∂ζ
= 0 (13)

These equations describe the linear Ekman layer problem. To solve it, we recall first that:

U = −∂p0

∂y

V =
∂p0

∂x

We can then define an auxiliary variable, Λ0 such that:

Λ0 = (u0 − U) + i(v0 − V )
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The x– and y–momentum equations (10) — (11) then can be compactly expressed:

∂2Λ0

∂ζ2
− 2iΛ0 = 0

This second–order equation has two solutions, but we are only interested in the solution that is bounded as
ζ →∞, that is the solution that does not modify the flow far from the boundary:

Λ0 = −λe−ζ(1+i) (14)

Applying the no slip boundary condition and converting back into real velocities, we find λ = U + iV , and:

u0 = U + e−ζ (−U cos ζ − V sin ζ) (15)
v0 = V + e−ζ (U sin ζ − V cos ζ) (16)

We can find W0 using the continuity equation (13):

W0 =
1
2

∂U∂y −∂V∂y − ∂U

∂x︸ ︷︷ ︸
=0

−∂V
∂x

 e−ζ cos ζ

+
1
2

∂U∂y +
∂V

∂y
+
∂U

∂x︸ ︷︷ ︸
=0

−∂V
∂x

 e−ζ sin ζ + C(x, y)

W0 = −1
2
ωe−ζ (cos ζ + sin ζ) +

1
2
ω (17)

We find the constant of integration by applying a no normal flow boundary condition at the bottom boundary.
In this, ω = ∂V

∂x −
∂U
∂y is the relative vorticity of the far field flow. We see that even infinitely far from the

boundary, friction has induced a vertical velocity W0 = 1
2ω that is proportional to ω, the vorticity of the

flow.
We have now completed the linear Ekman layer problem. We can see why it is worth pressing on to

a weakly nonlinear solution by taking a look at the vorticity equation, found by taking the curl of the
momentum equations (1) —(3):

ε(u
∂ω

∂x
+ v

∂ω

∂y
+ w

∂ω

∂z
)− ∂w

∂z
=
E

2
(
∂2ω

∂x2
+
∂2ω

∂y2
) +

∂2ω

∂z2
)

Far from the boundary, where the effects of friction given by the right hand side of the equation are small,
the vertical velocity gradient is balanced by the advection of vorticity. This strongly suggests that advective
effects will play an important role in the weakly nonlinear solution. Let’s calculate it.

3 Rossby Number Expansion

To find the weakly nonlinear correction, we examine our governing equations (6) to (9) to O(ε):(
u0
∂u0

∂x
+ v0

∂u0

∂y
+W0

∂u0

∂ζ

)
− v1 = −∂p1

∂x
+

1
2
∂2u1

∂ζ2
(18)(

u0
∂v0

∂x
+ v0

∂v0

∂y
+W0

∂v0

∂ζ

)
+ u1 = −∂p1

∂y
+

1
2
∂2v1

∂ζ2
(19)

0 = −∂p1

∂ζ
(20)

∂u1

∂x
+
∂v1

∂y
+
∂W1

∂ζ
= 0 (21)
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As in the linear problem, we can define an auxiliary variable Λ1 = u1 + iv1, and express the x– and y–
momentum equations in terms of it:

∂2Λ1

∂ζ2
− 2iΛ1 = 2

[∂p1

∂x
+ i

∂p1

∂y
+ u0

∂u0

∂x
+ v0

∂u0

∂y
+W0

∂u0

∂ζ
+

iu0
∂v0

∂x
+ iv0

∂v0

∂y
+ iW0

∂v0

∂ζ

]
(22)

Advection by the first–order velocity field becomes the forcing we apply to the order ε velocities. Note that
we include the pressure p1 with the forcing terms because it does not induce any cross-isobar flow, and
so will not induce any change in the Ekman pumping or boundary layer structure. We assume that the
pressure terms balance with the advection terms that do not decay to zero far from the boundary. After
much algebra, we find that these forcing terms can be expressed:

∂2Λ1

∂ζ2
− 2iΛ1 = ae−ζ(1−i) + be−ζ(1+i) + ce−2ζ (23)

where

a = iλω − 2U
∂λ

∂x
− 2V

∂λ

∂y

b = λω − 2U
∂λ

∂x
− 2V

∂λ

∂y

c = −λω + (U − iV )
(
∂λ

∂x
+ i

∂λ

∂y

)
In equation (23) the second forcing term is of the same form as the homogeneous solution, proportional to
exp[−ζ(1 + i)]. This forcing term is dangerous, because it yields solutions proportional to ζ exp[−ζ(1 + i)],
giving terms like (1 + εζ) exp[ζ(1 + i)] in the final expression for velocity. When you get far enough from
the boundary that εζ is O(1) our expansion becomes disordered, that is terms of O(ε) are not smaller than
those of O(1), and our solution becomes invalid. Terms with this disturbing property are called secular, and
one such term is found below in the solution for Λ1. The solution for equation (23), once again applying the
no–slip boundary condition Λ0 = 0 at ζ = 0, is:

Λ1 =
i

4
ae−ζ(1−i) − b

2(1 + i)
ζe−ζ(1+i)︸ ︷︷ ︸

secular

+
c

4− 2i
e−2ζ −

(
i

4
a+

c

4− 2i

)
e−ζ(1+i)︸ ︷︷ ︸

homogeneous

(24)

To deal with the secular term, we can use the approximation ex ≈ (1+x) to combine it with the homogeneous
solution, also indicated above, and interpret it as a modification to the structure of the boundary layer. While
this may seem presumptuous, it yields the same boundary layer thickness as approaching this problem with
a multiple–scale expansion, so it is probably true. The multiple–scale approach is shown in Section 5. With
this approximation, we find for the total velocity field of the fluid to order ε:

Λ = (u− U) + i(v − V ) = Λ0 + εΛ1 +O(ε2)

= −
(
λ+ ε

( i
4
a+

c

4− 2i
))

exp
[
−ζ
(
1 + i+ ε

b

2λ(1 + i)
)]

︸ ︷︷ ︸+ε
i

4
ae−ζ(1−i) + ε

c

4− 2i
e−2ζ (25)

This is admittedly difficult to interpret. However, we can see that the thickness of the boundary layer, given
by the exponential term indicated with an underbrace, is modified in a way that is involves to the vorticity
and the advection of the geostrophic flow. We can also use Λ and the continuity equation to calculate the
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Ekman pumping out of the boundary layer for an arbitrary geostrophic flow. Continuity (9) tell us:

W = −
∫ [

∂u

∂x
+
∂v

∂y

]
dζ

= − ∂

∂x

(
<
[∫

Λdζ
])
− ∂

∂y

(
=
[∫

Λdζ
])

We are interested in the value of W as we move far away from the boundary—the amount of fluid that is
actually pumped out of the boundary layer and into the far field fluid. We can see from equation (25) that
we will find a solution of the form:

Λ = − (λ+ ε(α+ γ)) e−ζ(1+i+εβ) + εαe−ζ(1−i) + εγe−2ζ (26)

In this, α = ia/4, β = b/(2λ(1 + i)), and γ = c/(4− 2i). This integrates very easily to give:∫
Λdζ =

λ+ ε(α+ γ)
1 + i+ εβ

e−ζ(1+i+εβ) − εα(1 + i)
2

e−ζ(1−i) − εγ
2
e−2ζ + C(x, y) (27)

We find the constant of integration C(x, y) by applying the boundary condition W (ζ = 0) = 0. Since all of
the terms in Λ decay with increasing ζ, W (ζ →∞) = C(x, y). Evaluating this by hand is not anyone’s idea
of fun, so I use a computer algebra program, Maple 11, to find:

W∞ =
1
2
ω − ε 7

40

((∂U
∂y

)2

+ U
∂2U

∂y2

)
+ ε

1
10

(
U
∂2V

∂y2
− ∂U

∂x

∂V

∂y
− V ∂

2U

∂x2

)
+

+ε
13
40

(
V
∂2U

∂y2
− U ∂2U

∂x∂y
+ V

∂2V

∂x∂y
+
∂U

∂x

∂V

∂x
+
∂V

∂x

∂V

∂y
− ∂U

∂x

∂U

∂y
+−∂U

∂y

∂V

∂y

)
−ε 9

20
∂V

∂x

∂U

∂y
+ ε

17
40

(
U
∂2V

∂x2
−
(
∂V

∂x

)2

− V ∂
2V

∂x2

)
−ε 7

10

((∂U
∂x

)2

+ U
∂2U

∂x2
+
(
∂V

∂y

)2

+ V
∂2V

∂Y 2

)
−ε11

40

(
U
∂2V

∂x∂y
+ V

∂2U

∂x∂y

)
(28)

This is the weakly non-linear solution for the Ekman pumping induced by a no–slip boundary in a rotating
frame. As with many of the things I have presented in this essay, it is rather difficult to interpret on its
own. We notice that that there is no direct dependence on vorticity advection, though all the terms of the
vorticity advection enter the above expression. Therefore, we will now turn to a simplified example to build
intuition about the effects of nonlinearity on the Ekman layer.

4 An Illustrative Example

We can gain great insight into the effect of advection on the boundary layer by exploring the simplest test
flow in which advection is present:

U = U(y)
V = constant

This is the unidirectional flow examined by Hart, Pedlosky, and others, modified by a constant cross–stream
velocity. The thickness of the boundary layer is controlled by the decaying exponential in Λ. It is the real
part of the exponential designated by an underbrace in equation (25):

Λ ∝ exp
[
−ζ + εζ

1
4
ω

(
1− 2V 2

U2 + V 2

)]
(29)
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Figure 1: Streamlines for the Illustrative Example. Plan View.

In this flow, the relative vorticity ω = −∂U∂y . If the cross–flow velocity V goes to zero, this reduces to the
solution for a unidirectional flow derived by Hart [4] and by Pedlosky [5] in the invited lectures of this year’s
summer school. That is, we find that the thickness of the Ekman layer is modified proportionally to the
vorticity of the flow: where the vorticity is positive the Ekman layer is thicker, and where the vorticity is
negative the Ekman layer is thinner. If, on the other hand, the cross–flow velocity V is very large, the
thickness of the Ekman layer is modified in the opposite direction, thicker where the vorticity is negative
and thinner where the vorticity is positive.

For this flow field, we find a solution of the form given in (26), with:

β = − 1
4λ

(
(i− 1)U

∂U

∂y
+ (i− 3)V

∂U

∂y

)
(30)

α =
1
4

(
U
∂U

∂y
− iV ∂U

∂y

)
(31)

γ =
3i+ 1

10

(
U
∂U

∂y
+ V

∂U

∂y

)
(32)

Integrating, and taking the limit as ζ →∞, we find

W∞ = −1
2
∂U

∂y
− ε 7

40

((∂U
∂y

)2

+ U
∂2U

∂y2

)
+ ε

13
40
V
∂2U

∂y2
(33)

The final term looks like the advection of vorticity. However, it is unclear if that is the appropriate physical
interpretation because the general solution given in equation (28) is not directly proportional to vorticity
advection.

To better understand the quantities we’ve derived, let’s examine a specific flow:

U = cos ky
V = constant

The streamlines of this flow are shown in Figure 1. This flow makes an ideal test case because it is not
computationally demanding, but has the physical characteristics we are interested in investigating: regions
of positive and negative vorticity and fluid advected between them. The boundary layer thickness is:

Λ ∝ exp
[
−ζ + εζ

1
4
k sin ky

(
1− 2V 2

cos2 ky + V 2

)]
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This is shown in Figure 2 for three cases: no advection, weak advection, and strong advection. One imme-
diately sees the importance of considering advection because the even the sign of the lowest order nonlinear
effect depends on it. Previously published higher order solutions might not even correctly predict if the
boundary layer should be thicker or thinner. Figures 3 and 4 show the vertical velocity profiles for this test
case, and one can see that for some advection strengths the boundary layer is thickened and for some it is
compressed, as suggested by Figure 2. The Ekman pumping shown in Figure 5 is given by:

W∞ =
k

2
sin ky − ε 7

40
k2 − ε13

40
V k2 cos ky

Increasing the cross-flow velocity affects both the phase and the magnitude of the Ekman pumping. The
phase of the Ekman pumping shifts from being in phase with the vorticity of the flow to being π

2 out of
phase with it. The weakly nonlinear correction is also proportional to the curvature of the sinusoidal flow—
as k increases and the length scale of the oscillations decrease, the fluctuations in vorticity become more
pronounced and the Ekman pumping stronger. Note that the nonlinear correction to the Ekman pumping
can be asymmetrical as the vertical velocity induced by the vorticity can either reinforce or suppress it.

5 Multiple Scale Expansion

Another way to derive a weakly nonlinear solution to the Ekman layer is by assuming the vertical scales of
the boundary layer, the far–field flow, and the transition region between them are all well separated and
performing a multiple scale expansion. As in the Rossby number expansion, we start with the boundary
layer coordinate ζ = z/

√
E, as defined in equation (5). We also define a coordinate that is of order one in

the transition region between the boundary layer and the interior flow:

η = εζ =
ε√
E
z

We assume that the scale of ζ and η are so widely separated that we can treat them as independent variables.
Therefore:

∂

∂z
=

1√
E

∂

∂ζ
+

ε√
E

∂

∂η
;

∂2

∂z2
=

1
E

∂2

∂ζ2
+ 2

ε

E

∂2

∂ζ∂η
+
ε2

E

∂2

∂η2

Our equations of motion (1) – (4) then become:

ε

(
u
∂u

∂x
+ v

∂u

∂y
+W

∂u

∂ζ
+ εW

∂u

∂η

)
− v = −∂p

∂x
+

1
2

(
E
∂2u

∂x2
+ E

∂2u

∂y2
+
∂2u

∂ζ2
+ 2ε

∂2u

∂ζ∂η
+ ε2

∂2u

∂η2

)
(34)

ε

(
u
∂v

∂x
+ v

∂v

∂y
+W

∂v

∂ζ
+ εW

∂v

∂η

)
+ u = −∂p

∂y
+

1
2

(
E
∂2v

∂x2
+ E

∂2v

∂y2
+
∂2v

∂ζ2
+ 2ε

∂2v

∂ζ∂η
+ ε2

∂2v

∂η2

)
(35)

εE

(
u
∂W

∂x
+ v

∂W

∂y
+W

∂W

∂ζ
+ εW

∂W

∂η

)
= −∂p

∂ζ
+
E

2

(
E
∂2W

∂x2
+ E

∂2W

∂y2
+
∂2W

∂ζ2
+ 2ε

∂2W

∂ζ∂η
+ ε2

∂2W

∂η2

)
∂u

∂x
+
∂v

∂y
+
∂W

∂ζ
+ ε

∂W

∂η
= 0

To O(1), we recover the same linear Ekman layer discussed previously. Its solution from equation (14) is:

Λ0 = −λe−ζ(1+i) (36)

However, instead of saying that the coefficient λ varies only in x and y, we allow it to vary in the transitional
vertical coordinate η, as well. This coordinate is so dilated with respect to the boundary layer that variations
in η seem constant within the boundary layer. If we let the coefficient λ = A + iB, the no slip boundary
condition gives us A(ζ = 0) = −U and B(ζ = 0) = −V . The Ekman pumping becomes:

W0 = C(x, y, η) +
1
2

(
∂B

∂x
− ∂A

∂y
+
∂B

∂y
+
∂A

∂x

)
e−ζ cos ζ

+
1
2

(
∂B

∂x
− ∂A

∂y
− ∂B

∂y
− ∂A

∂x

)
e−ζ sin ζ (37)
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Since A and B now are considered to vary vertically, we can not assume that ∂A
∂x + ∂B

∂y = 0. To determine A
and B we must solve the next higher order problem, which has governing equations:(

u0
∂u0

∂x
+ v0

∂u0

∂y
+W0

∂u0

∂ζ

)
− v1 = −∂p1

∂x
+

1
2

(
∂2u1

∂ζ2
+ 2

∂2u0

∂ζ∂η

)
(
u0
∂v0

∂x
+ v0

∂v0

∂y
+W0

∂v0

∂ζ

)
+ u1 = −∂p1

∂y
+

1
2

(
∂2v1

∂ζ2
+ 2

∂2v0

∂ζ∂η

)
0 = −∂p1

∂ζ
− ∂p0

∂η

∂u1

∂x
+
∂v1

∂y
+
∂W1

∂ζ
+
∂W0

∂η
= 0

We can again combine the x– and y–momentum equations to find an inhomogeneous differential equation
for Λ1 = u1 + iv1, analogous to equation (22):

∂2Λ1

∂ζ2
− 2iΛ1 = 2

[∂p1

∂x
+ i

∂p1

∂y
+ u0

∂u0

∂x
+ v0

∂u0

∂y
+W0

∂u0

∂ζ
− ∂2u0

∂ζ∂η
+

+iu0
∂v0

∂x
+ iv0

∂v0

∂y
+ iW0

∂v0

∂ζ
− ∂2v0

∂ζ∂η

]
(38)

As in the single–scale expansion, we find secular forcing terms in this equation that resonate with the
homogeneous solution, proportional to exp[−ζ(1 + i)]. In order to ensure that our perturbation expansion
in ε does not become disordered, we insist that all secular terms sum to zero. This is the condition for the
existence of a well–behaved expansion in Rossby number, so it is called the solvability condition. It is:

∂λ

∂η
+

1
1 + i

(
U
∂λ

∂x
+ V

∂λ

∂y

)
− λ

(
C(x, y, η) +

ω

2i(1 + i)

)
= 0 (39)

In this, C(x, y, η) is our constant of integration from equation (37) for the linear Ekman pumping. We find
C(x, y, η) by forming a vorticity equation from our x– and y–momentum equations (34) and (35). We are
interested in the transitional region between the boundary layer and the far field, which is far enough from
the boundary that things are no longer changing over scales of ζ. The O(ε) vorticity equation is:

u0
∂ω0

∂x
+ v0

∂ω0

∂y
− ∂W0

∂η
= 0

Since we are looking outside of the boundary layer, u0 = U and v0 = V , and we can integrate to find that:

W0(x, y, η)
∣∣∣
ζ→∞

= C(x, y, η) =
(
U
∂ω

∂x
+ V

∂ω

∂y

)
η + C ′(x, y) (40)

As before, we use the no normal flow boundary condition at the bottom boundary to find C ′(x, y) = − 1
2ω.

We see very clearly from this method that the Ekman pumping to O(ε) should be proportional to the vorticity
advection in the interior.

We can now use the method of characteristics to convert the solvability condition, a partial differential
equation, to a group of ordinary differential equations. We define a characteristic parameter s such that:

∂x

∂s
= U (41)

∂y

∂s
= V (42)

∂η

∂s
= 1 + i (43)
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Our solvability condition (39) now reduces to:

dλ
ds
− λ

(
(1 + i)C(x, y, η)− i1

2
ω

)
= 0 (44)

It is straightforward to integrate an equation of this form and find λ, but in order to do so we need an
expression for C(x, y, η), which requires that we know the specific form of the far field velocities U and V .
Unfortunately, this is as far as it is possible to go in the general case. To see how this method would work for
known velocities, let’s consider the same flow that we discussed in Section 4: U = cos ky and V = constant.
Equations (41) and (43) give y = V x+ y0 and η = (1 + i)s. Putting these into C(x, y, η) from equation (40),
we can solve equation (44) by direct integration in s. One finds eventually that:

λ = λ0 exp
[
− (1 + i)Ukη sin ky − U

V
(2i− 1

2
) cos ky +

+
U

V
(2i− 1

2
)(cos(ky − V kη

2
) cosh

V kη

2
+ +i sin(ky − V kη

2
) sinh

V kη

2

]
This solution is only accurate to order ε, so we approximate all of the functions containing an η = εζ to
order ε, for example sinhx ≈ x. To find the changes induced by advection in the thickness of the boundary
layer, we apply our boundary conditions at ζ = η = 0 to find λ0 and take the real part of the exponential
above, giving:

Λ ∝ exp
[
−ζ + εζ

1
4
ω

(
1− 2V 2

U2 + V 2

)]
(45)

This is exactly the same boundary layer thickness that we calculated using the single–scale expansion,
shown in equation (29). The fact that one can calculate it in two different ways substantially reinforces one’s
confidence that it might be correct.

Unfortunately, the two–scale method proved to be both less general and more complicated than a simple
single–scale expansion. However, it was useful for confirming our previous efforts. Moreover, it provided us
with an intuitive understanding of why the Ekman pumping should be proportional to the vorticity advection
in the interior flow.

6 Conclusions

In this study, we found the weakly nonlinear correction to the Ekman boundary layer of an arbitrary
horizontal flow over a plate. Previous studies had concentrated on unidirectional flows of the form U = U(y),
V = 0. Guided by the intuition that the Ekman pumping out of the boundary layer should be related to
the advection of vorticity, a quantitiy that goes to zero in the case of unidirectional flow, we performed
an expansion in Rossby number. We found that both the structure of the boundary layer and the Ekman
pumping were strongly effected to order ε by advection. We derived a general expression for the weakly
nonlinear Ekman pumping for an arbitrary far–field flow, and studied a simple example in detail. In our
example, both the Ekman pumping and the modification to the thickness of the boundary layer were shifted
in phase by the introduction of vorticity.

There are a number of interesting applications for continued research in this area. Repeating these
calculations for a stress boundary condition, analgous to the surface of the ocean, should be straight–forward
mathematically. Once that is done, there are a number of high–resolution data sets already collected that
might allow us to see if the non–linear corrections derived here are important in oceanographic contexts. In
areas of very high wind stress, such as storms, or in areas where there is a strong and narrow current like
the Gulf Stream, these corrections may prove to be significant.

I would like to acknowledge the help of my advisor Joe Pedlosky, for his advice and assistance, and
for the stimulating principle lectures; the rest of the GFD faculty, and the GFD fellows for the wonderful
atmosphere of Walsh Cottage. Finally, I would like to thank Claudia Cenedese and John Whitehead for all
their efforts organizing the summer school.
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Figure 2: Modification of the boundary layer thickness for varying advection strength. The base flow in
this figure is U = cos ky, V = constant. Notice how for low cross–stream velocities, shown in blue, the
modification boundary layer thickness is proportional to the vorticity, shown in the dashed line. For high
cross–stream velocities, shown in yellow, the modification of the boundary layer thickness is opposite to the
vorticity.
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Figure 3: x–velocity in the boundary layer for varying strengths of advection for ky = π
4 in out example

velocity field of U = cos ky, V = constant. Dashed lines indicate the linear Ekman solution, and solid
lines indicate weakly nonlinear solution. All of the velocities have been rescaled by the maximum far–field
velocity. Note that nonlinear effects may thicken or thin the boundary layer at a given location, depending
on the strength of the advection.
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Figure 4: Advection velocity in the boundary layer for varying strengths of advection for ky = π
4 in out

example velocity field of U = cos ky, V = constant. As in Figure 3, dashed lines give the linear solution and
solid lines give the weakly non-linear solution. For the strong advection case of V = 10, the velocities have
been rescaled by V .
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Figure 5: Ekman pumping, W∞. The dashed black line gives the vorticity of the far–field flow. The
introduction of vorticity advection shifts the phase of the Ekman pumping by π/2. Note also that there is
a weak asymmetry in the Ekman pumping between areas of positive and negative vorticity.
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Abstract. The results of an experimental investigation of the circular internal hydraulic jump in two-layer fluid are 

presented, with focus on the dependence on the flow rates and density differences between fresh and salty water 

used. For the lower flow rates the stable circular patterns, consisted of three or four well-formed stationary waves, 

were observed, while for the higher flow rates their axial symmetry was lost by deformation of entire wave pattern 

in cusp-like features. This stable, laminar regime lasted 4-5 minutes, after which instabilities started to develop, 

finally breaking the wave patterns in turbulent motion. The radii of stationary waves were measured, and the depths 

of the fluid inside and outside the jump were calculated in order to find the critical values of jump radius, fluid depth 

and Froude number just before the onset of instabilities. While the values of jump radius, fluid depth and Froude 

number inside the jump (reaching values of up to 12-14) strongly depend on variations in flow rate and density 

difference, this dependence does not seem to be so strong for the Froude number outside the jump. Their values are 

below 1, due to dispersion relation for the internal waves in two-layer fluid used to calculate the fluid depth outside 

the jump. Comparison of results with the analytic Watson’s (1964) model for the jump in the single-layer flow 

indicates the existence of similar functional dependence for the two-layer fluid. Finally, the experiments where the 

sharp density difference was smoothed by diffusion indicate that the stationary, laminar waves cannot occur in a 

continuously stratified fluid. 

Keywords: Hydraulic jump; Stationary waves; Stratified fluid 

1. Introduction 
 

The circular hydraulic jump may arise when a fluid jet falling vertically at moderate Reynolds number 

strikes a horizontal plate (a usual fluid dynamics phenomenon, for instance often observed in a kitchen 

sink). Fluid is spread radially in a thin layer, until reaching a radius at which the layer depth increases 
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abruptly. Theoretical predictions for the jump radius based on inviscid theory were first presented by 

Rayleigh (1914) in a paper on hydraulic jumps and bores. The dominant influence of fluid viscosity on 

the jump radius was elucidated by Watson (1964), who developed an appropriate description of the 

boundary layer on the impact plate. Watson (1964), however, has not accounted for another important 

influence on the jump radius in single-layer flow: the surface tension. Bush and Aristoff (2003) reviewed 

Watson’s study of the circular hydraulic jump, and later illustrated the influence of surface tension on the 

jump radius in their experimental study (Bush et al., 2006). Subsequent studies of the circular jump have 

focused principally on describing the boundary layer separation and closed circulation cells (“rotors”), 

which may cause the changes of surface slopes and stable shapes other than circular, especially when 

fluids other than water are used (Watson, 1964; Craik et al., 1981; Bowles and Smith 1992; Bohr et al., 

1993; Higuera, 1994; Bush and Aristoff, 2003; Bush et al., 2006). 

The surface tension, however important it may be in the single-layer jumps, is negligible at the 

interface between the layers in the internal circular hydraulic jumps. These are produced when a denser 

fluid falls vertically onto a horizontal surface submerged beneath a deep layer of less dense, miscible 

fluid, radially spreading from the point of impact, at the typical distance of a few centimetres from it. 

Recent theoretical and numerical studies of internal hydraulic jumps in stably stratified two-layer miscible 

flows have been focused on the entrainment and mass transfer between the layers (Holland et al., 2002), 

and development of the proper parameterizations for description of energy dissipation in turbulent flows 

(Hassid et al., 2007). As seen from above, continuously stratified fluids are often represented as being in 

two layers. The subject of whether the stationary internal hydraulic jumps can occur in a stratified flow 

beneath of an unstratified stationary layer may be of some importance in relation to the jumps of much 

greater size that are postulated to occur in flows through channels on the flanks of mid-ocean ridges and 

through passages connecting the deep ocean basins (Thurnherr et al., 2005; Thorpe, 2007), although there 

are as yet no observations with sufficient resolution to establish the presence or otherwise of such 

transitions. Another example of what is described as the stationary internal hydraulic jump in the lee of 

The Sierra Nevada can be found in the book of Lighthill (1978; his Fig. 117). 

This experimental study of the circular internal hydraulic jump attempts to gain insight in this 

interesting problem and to answer to some of the above questions, extending experimental work with two-

layer fluid conducted by S. A. Thorpe. The report is organized as follows: first, a description of the 

experimental apparatus, with the details of representative experiments and observed jump patterns is 

given in Section 2. The calculated quantitative parameters are described in Section 3, followed by the 

conclusions and recommendations for future experiments in Section 4. 



2. Experiments and observations 

2.1. Experimental set-up 

The simplified sketch of apparatus is given in Fig. 1. Salty water of density ρ2 was pumped (Fig. 1, 5) 

from the bucket (Fig. 1, 6) through the nozzle of radius anoz = 0.113 cm (Fig. 1, 3) into the square glass 

tank (Fig. 1, 1; tank dimensions were 58.4×58.4 cm). Prior to the start of experiment it was necessary to 

establish the uniform flow of salty water by removing the bubbles of air. For that purpose an additional 

plastic tube with the T-junction (Fig. 1, 4) was used, directing the salty water in another bucket until the 

bubbles went out of the plastic tube. After that the flow was redirected to the nozzle for a few moments to 

push out the air from it. The nozzle was elevated to the height of about 0.3 cm from the tank bottom (to 

minimize any mixing between the descending with the surrounding fluid). Then, the tank was filled with 

fresh water of density ρ1 to a depth of 3 cm, and left undisturbed for 15-20 minutes so the water could 

come to rest. 

The pump was calibrated for the range of flow rates (Q) from 0.95-8.8 cm3s-1 (pump settings 0-

999). However, it was observed that their values were somewhat smaller with the full experimental setup. 

Apparently, the small nozzle radius, rather than the higher density of salty water used in experiments 

mostly affected the flow rate. The density of fresh water was almost constant through all experiments (ρ1 

≈ 0.99825 gcm-3). A plastic plate (Fig. 1, 2), covered with paper, was used both as support for the nozzle 

(in order to ensure that the impinging fluid was perpendicular to the tank bottom) and as the shadowgraph 

screen for observing and recording the observed patterns. They were made visible by the parallel light 

beam projected (Fig. 1, 9) onto (and reflected from) the mirror (Fig. 1, 7) below the tank, angled at α = 

45° from the horizontal, and recorded with the Nikon digital photo camera (Fig. 1, 8) placed on the ladder 

above the tank. The photo of experimental setup is given in Figure 2 (camera not shown). 

The range of flow rates used (also measured), and the corresponding speeds (vnoz) and Reynolds 

number (Renoz) of flow in the nozzle are shown in Table 1. Here the Reynolds number is calculated as 
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Figure 1. The simplified sketch of experimental apparatus: 1. Square tank: at = 58.4 cm, ht = 5 cm, filled with fresh 

water (ρ1); 2. Screen; 3. Nozzle (anoz = 0.113 cm), at da = 0.3 cm; 4. Plastic tube with T-junction; 5. Pump; 6. Bucket 

with salty water (ρ2, ρ2 > ρ1); 7. Mirror, α = 45°; 8. Camera; 9. Projector 

 

 

Setting Q (cm3s-1) vnoz (cms-1) Renoz

50 0.398 9.917 111.64 
100 0.828 20.625 232.20 
150 1.258 31.332 352.73 
200 1.675 41.720 469.68 
250 2.101 52.343 589.27 
300 2.520 62.790 706.89 
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Table 1. Flow rates, flow

speeds in the nozzle and

Reynolds number of the

flow in nozzle. 
 hd =3.5 cm 

22.7 cm 

18.7 cm 

 2. (a) The photo of experimental 

 (b) Pie dish used to simulate the 

r geometry, with hd denoting its 
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and ν = 1.004×10-6 m2s-1 is the value of kinematic viscosity of fresh water at 20 °C. Since the range of 

temperature of both fresh and salty water used in these experiments was approximately 18–23 °C, and the 

salty water was on average about 5-10 % denser than fresh, the above value of kinematic viscosity can be 

used with reasonable accuracy. 

Two sets of experiments were made: the first with the higher density of salty water (ρ2 ≈ 1.10544 

gcm-3) for all flow rates in Table 1, and second using ρ2 ≈ 1.05044 gcm-3, for pump settings 100 and 200. 

Each of them (apart from the one with the highest flow rate, 300), was performed at least twice: once in 

the square tank, and the other time with the Pyrex glass pie dish (put into the tank, dimensions and 

geometry shown in Fig. 2a) needed to simulate the radially symmetric boundaries. When conducting 

experiments with the pie dish, the initial height of fresh water was set at about 4 cm (≈ 5 mm deeper than 

the height of the pie dish) so that the fresh water covered its edge. When emptying the tank at the end of 

the experiment, it was observed that in the case of lower flow rates (settings 50-200) almost all of the salt 

water remained in the pie dish. Fresh water was effectively pushed out by salty water without the return 

circulation over the dish edge. At the higher flow rates (settings 250–300) filling of the dish with salty 

water was quick, initializing relatively fast overflow over the dish edge and corresponding inflow of the 

fresh water. 

2.2. Development of the circular jump 

As can be seen from Table 1, the experiments were conducted in the range of moderate Reynolds 

numbers (order 102 - 103). After the preparations, described in Section 2.1, the flow of salty water was 

switched on. It produced a radially spreading density current that eventually reached the side walls and in 

which, at a few centimetres from the impinging jet, stationary circular waves were formed. Due to the 

difference in refractive indices of fresh and salty water it was possible to distinguish between the crests 

(bright bands) and troughs (dark bands) of stationary waves that formed the transition region between the 

interior and exterior flow. The time evolution of typical observed wave patterns is shown in Figs. 3 (an 

example for the square tank) and 4 (an example for the pie dish). In the square tank stationary waves were 

formed within first 10 s after the start , with radii from 0.8 to 3.5 cm (Fig. 3a, shown after ≈ 3 min after 

the start of experiment). When the pie dish was used, the wave patterns were formed ≈ 30 s after the start 

of experiment (Fig. 4a), with the similar range of wave radii. 

In the first set of experiments (ρ2 ≈ 1.10544 gcm-3), for both square tank and pie dish, the 

observed waves were circular for the pump settings 50-200 (see Table 1 for the corresponding Q and 

Renoz) and formed of three (settings 50-150) or four bright rings (setting 200). The same was observed in 

the second set when the lower density (ρ2 ≈ 1.05044 gcm-3) was used for flow rate Q100 (Fig. 3a). When 



the flow rate was increased to Q250 = 2.101 cm3s-1 in the first, or to Q200 = 1.675 cm3s-1 in the second set of 

experiments, the axial symmetry was lost in the cusp-like deformations (Fig. 4a). The higher flow rates 

(Q300 and Q250, for the first and second set of experiments, respectively) lead to wave breaking almost 

instantly after the flow of salty water started. Since they could not produce stable laminar wave patterns in 

the experiments presented, they are not discussed in this report. Also, the symmetry of waves was, even at 

the lower flow rates, extremely sensitive to any variations from horizontal; consequently, great care was 

taken in levelling the system. The white spot in Figs. 3 and 4 is a hole drilled in the plastic plate, through 

which potassium permanganate was added in most of the experiments in order to detect a possible 

appearance of boundary layer separation and rotors. Although we did not observe any clear indication of 

rotors, potassium permanganate was very useful in determining the general circulation patterns in the tank 

or the pie dish. 
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a) 

c) d)

b)

Figure 3. Observed jump patterns in the square tank at (a) 3 min 10 s, (b) 6 min, (c) 9 min 50 s and (d) 21 min 58 s 

after the start of experiment. Here Q100 = 0.828 cm3s-1, Renoz = 232.20 and ρ2 = 1.05058 gcm-3. 



 a) b) c) 
 

 

 

 

 

 

 

 

 

Figure 4. Observed jump patterns in the pie dish (a) 36 s, (b) 40 s and (c) 1 min after the start of experiment. Here 

Q250 = 2.101 cm3s-1, Renoz = 589.27 and ρ2 = 1.10511 gcm-3. The size of photos is ≈ 10 cm×14 cm 
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Figure 5. Time evolution of the standing wave radii (with error bars) for the pump setting 100: (a) without, and (b) 

with the pie dish for ρ2 = 1.10527 gcm-3 (solid) and ρ2 = 1.05058 gcm-3 (dashed). Here Q100 = 0.828 cms-1 and Renoz 

= 232.20; r1 and r3 are the radii of the innermost and outermost waves, respectively. 



 
 
Figure 6. Time evolution of the innermost wave radius (with error bars), r1, for the pump settings 100 (red, ρ2 = 

1.10527 gcm-3), 150 (blue, ρ2 = 1.10552 gcm-3) and 200 (black, ρ2 = 1.10507 gcm-3), for the experiments without 

(solid) and with the pie dish (dashed). 

 

The photos were processed by digitally extracting the cross-sections of wave patterns and 

detecting the positions of light maxima (in pixels), which then gave the estimates of the wave crests radii. 

To convert the radii from pixels to centimetres the translucent plastic ruler attached on top of the plastic 

plate (Fig. 1, 2, and Fig. 3) was used as the scale (at the resolution of photos used in experiments, 1 cm ≈ 

45 pixels). Figure 5 shows the time evolution of wave crests radii (r1, r2, and r3, respectively) for the flow 

rate Q100, for both the higher (solid) and lower (dashed) density of salty water. In this, and all following 

plots as well, the results are shown after the time needed for the salty water to completely cover the 

bottom of the tank (≈ 2 min, Fig. 5a) or the pie dish (≈ 30 s, Fig. 5b), so the waves could be considered as 

quasi-stationary. The error bars (vertical ticks in plots) were calculated from the estimated uncertainties in 

determining the crests radii (± 2 pixels ≈ ± 0.04 cm for the inner waves, due to the stronger and thus 

better resolved light maxima, and ± 3 pixels ≈ ± 0.07 cm for the outer waves). It can be seen (Fig. 5) that 

the distance between the rings decreases as their radii increase, independently of the density difference, 

flow rate or geometry used. Also, the decreased density difference between fresh and salty water is 

responsible for increasing the wave radii for the same flow rate (Fig. 5, dashed lines). In Figure 6 a 

similar comparison is given for the various flow rates at the same density difference (only the innermost 
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radius, r1, is shown), showing that increasing the flow rate (from Q100 to Q200) results in increase of wave 

crests radii (red, blue and black lines, respectively). Both Figures 5 and 6 show the main difference 

between the experiments without and with the pie dish, i.e. when the pie dish was used, the greater wave 

radii were observed, but their decreasing with time was faster (due to the faster filling with salty water). 

This rapidity of changes brings into question the assumption of waves being stationary in the pie dish, 

although the same assumption is valid in the square tank. 

2.3. Transition from steady wavelike to turbulent flow 

The stable wave patterns, described in Section 2.2, lasted for approximately 4 min for the salt solution of 

higher, and 5 min for the solution of lower density (Fig. 3a). After that time the outer band was deformed 

by the irregular undular instabilities moving around it, while the inner waves were still visible (Fig. 3b). 

After ≈ 1 min for the solution of higher, i.e. ≈ 1.5 – 2 min for the solution of lower density (Fig. 3c) the 

inner waves also collapsed and the motion became turbulent. This motion appeared to be organized in the 

forms looking alike the flower petals that were moving in groups around, and bursting in and out of the 

deformed outer band (Fig. 3c). As the turbulent mixing decreased the density differences, the flow 

eventually calmed (Fig. 3d). Experiments with the tank only therefore lasted from 30-50 min (depending 

on the flow rate) and the photos were taken initially every 10 s, and after that every 15-30 s as the flow 

became steadier. When the pie dish was used, the onset of instabilities was after ≈ 1 min after the start of 

experiment (Fig. 4b). Also, the transition between the laminar and turbulent regime happened almost 

instantly (within a few seconds), leading to the well developed turbulent forms (Fig. 4c). Because of the 

faster dynamics photos were initially taken every 5 s, and later every 10-15 s, and experiments lasted 

approximately 5 min. 

The last values of wave crests radii in Figs. 5 and 6 are those estimated just before the onset of 

undular instabilities deformed the outermost wave (Figs. 3b and 4b). They, and all the parameters that 

will later be derived from them, will be referred as the “critical values”. Besides increasing the wave radii 

for the same flow rate, it can be seen that the decreased density difference between fresh and salty water 

also postpones the onset of instabilities. For the flow rate Q100 (Renoz = 232.20), in the square tank the 

radii of last undisturbed waves were estimated 240 s after the start of experiment for ρ2 ≈ 1.10544 gcm-3 

(Fig. 5a, solid), and 350 s for ρ2 ≈ 1.05044 gcm-3 (Fig. 5a, dashed). As commented in Section 2.2, the 

duration of stable regime is shorter when the pie dish is used in experiments (Fig. 5b; ≈ 76 s for ρ2 ≈ 

1.10544 gcm-3, solid, and 90 s for ρ2 ≈ 1.05044 gcm-3, dashed). Interestingly, the onset of instabilities 

does not seem to depend on the increase of flow rates, and therefore the Reynolds numbers of the flow 

(Fig. 6).  



2.4. Experiments with continuous stratification 

The experiments in two-layer fluid, described above, were later modified in order to investigate whether 

the internal hydraulic jump can occur in a continuously stratified fluid. Two such experiments were made 

(only in the pie dish, at Q150 = 1.258 cm3s-1 and Renoz = 352.73), one for each mean density of salty water 

used (ρ2 ≈ 1.10544 gcm-3 and ρ2 ≈ 1.05044 gcm-3). To cover the distance between the nozzle and the pie 

dish bottom (about 3 mm of depth), the pie dish was initially filled with the salty water for approximately 

85 s. This layer of salty water was then let to diffuse for at least two hours so the continuous density 

gradient between it (below) and fresh water (above) could be established. Since the above layer of fresh 

water was ≈ 3 cm thick, it could be considered as being of uniform density. After that, the experiment was 

conducted as usual, and the observations were compared to the former ones with the same flow rate and 

sharp density interface. In both of these experiments, independently of density difference or flow rate 

used, no stable laminar wave patterns as in previous experiments were observed. Instead, the diverging 

flow instantly became turbulent with no appearance of a stationary, laminar, circular jump surrounding 

the point of impact of the jet on the horizontal plane. Figure 7 shows the comparison of experiments with 

sharp density discontinuity (two-layer fluid, Fig. 7a), and with the continuous stratification in the lower 

layer (Fig. 7b), both at ≈ 45 s after the start of experiment. According to these observations, the 

stationary, laminar hydraulic jump cannot be sustained in a continuously stratified layer in motion 

beneath a stationary layer of uniform density. 
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a) b) 

 

Figure 7. Observed jump patterns in the pie dish (a) in two layer fluid, and (b) with continuous stratification in the 

upper layer, both at ≈ 45 s after the start of experiment. Here Q150 = 1.258 cm3s-1, Renoz = 352.73 and ρ2 ≈ 1.10544 

gcm-3. 



3. Parameter study 

 

In this section we try to describe the observations in terms of some common parameters, which may also 

lead us to the conditions necessary for the development of instabilities in wave patterns. Furthermore, in 

Sec. 2 we saw that the difference in geometry of the problem (i.e. using the pie dish in experiments) 

affects the dynamics of observed waves. That brings us to the question: which are the common 

characteristics of these two types of experiments? As in Sec. 2, we will carry out this analysis first for the 

fixed density difference and different flow rates, and then we will compare results for the chosen flow 

rate, but with different densities of salty water. The main parameters we will use to describe the flow are: 

1. Froude number inside (upstream), Fr1, and outside (downstream) the jump, Fr2. Here they are 

defined as 
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U1 and U2 are the flow speeds inside and outside the jump, respectively, H1 and H2 are the corresponding 

depths of salty water, and g’ is the reduced density. U1,2 and g’ can be calculated as: 
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Here R1 and R2 are the radii within, and just outside the jump, determined from the estimated radii of 

wave crests as: 
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 where the value of R2 depends on the number of waves observed (3 for flow rates 50-150 and 4 for 

higher ones). In the first set of experiments (ρ2 ≈ 1.10544 gcm-3) δρ ≈ 0.097, and in the second (ρ2 ≈ 

1.05044 gcm-3) δρ ≈ 0.05 for all flow rates. According to Eqs. 4 and 6, the flow speed is inversely 

proportional to the wave radii. When relating this to the distances between the rings (Section 2.2, Fig. 5), 

it can be seen that as the wave radii increase from the inner to outer wave, the flow slows down.  
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Since the direct measurements of H1 and H2 were not available, they had to be estimated. The 

mean thickness of the layer below the interface along which the waves were propagating against the flow, 

h, was calculated in two ways. One was to use the flow rate, Q, the time, t, and the surface of the tank or 

pie dish covered with salty water, (A1)T,P. The latter was estimated from the total surface, (A)T,P, and R1 as 
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The another one, used further in this report, was to numerically estimate h from the dispersion relation for 

the phase speed (c) in two-layer, inviscid fluid (Thorpe, 2005) as 
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where λ is the wavelength (estimated as the difference in successive wave radii), and k is the 

corresponding wave number. This relation is derived taking into consideration the assumptions of small 

amplitudes of internal waves (i.e. linear displacements), and no velocity shear between the layers (see Eq. 

3.4, Thorpe, 2005). Since the observed waves were stationary, the phase speed had to be equal to the flow 

speed, U, given with (4). Then, (8a) becomes: 
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Rewriting Eq. 8 gives  so the values of Fr),kh/()khtanh(Fr2 = 2 thus obtained are between 0 and 1 

(corresponding to the limits for subcritical flow in 2D case). The depth outside the jump, H2, was then 

taken as H2 = h(r = R2). For the depth inside the jump, H1, we took the value of H2 at the first moment 

when the waves were well-formed, so their radii could have been measured from the photos. This was 

usually 10 s after the start of experiment in the tank, and 30-35 s in the pie dish (see Section 2.2). 

Furthermore, it was assumed that H1 remained constant and was never greater than H2. 

2. The ratio of outer (H2) and inner (H1) depth of the salty fluid, q 

(9) 
12 H/Hq =

 

Some of the calculated parameters for δρ ≈ 0.097 are plotted in Figures 8-11. The dependence of 

R2 on H2 (and therefore on λ) is given in Fig. 8. It can be seen that, independently of the geometry of 

experiment used (Fig. 8; values in the tank, circles, or in the pie dish, asterisks), we find almost the same 

values of R2 at the same H2 (i.e. the same wavelengths at the same jump radii) for the given flow rate.  
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Figure 8. Dependence of outer jump radius, R2 (with error bars), on H2 for the pump settings 100 (red), 150 (blue) 

and 200 (black), for the experiments without (circles) and with the pie dish (asterisks). The rest as in Figure 6. 

 

 
 
Figure 9. a) Downstream Froude number, Fr2 (with error bars), versus outer jump radius, R2; b) upstream Froude 

number, Fr1 (with error bars), versus inner jump radius, R1. The rest as in Figure 7. 
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Furthermore, as discussed in Section 2.2, the number of waves does not depend on the 

experimental geometry. From now on, we will refer to this behaviour of the observed waves as the 

“dynamical similarity” of wave patterns in the tank and the pie dish. The values of R2 decrease with time 

(see also Figs. 5 and 6) and H2 increases. The critical values of both R2 and H2, i.e. the values just before 

the onset of instabilities, seem to grow as the flow rate is increased. 

According to Eq. 8, the values of downstream Froude number (Fr2, Fig. 9a) are below 1, and 

there is no significant correlation with R2. However, the upstream Froude number (Fr1, Fig. 9b) clearly 

increases as R1 decreases (the jump becoming narrower with time), achieving the maximal values of ≈ 8-

10 for the lowest flow rate depicted (Q100, red), and ≈ 5-6 for the higher flow rates (Q150, blue; Q200, black) 

just before the onset of instabilities (smallest R1).  

The time evolution of the depth ratio, q, is shown in Fig. 9. This increase of the fluid depth at the 

jump is more evident in the pie dish (asterisks, dashed lines), reaching values of ≈ 1.1-1.25 before 

transition to turbulent regime. Also, the values of q are smaller when only the tank is used due to the 

slower filling. However, these results have to be taken with some caution, since they are calculated from 

H2, the estimate of which is mostly subject to uncertainties in determining the outer ring radii from 

photos. 

 

 
 
Figure 10. Evolution of q (Eq. 9), with error bars, in time. The rest as in Figure 7. 
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 Watson (1964) derived the theoretical prediction of the jump position (R1) in the single-layer, 

viscous fluid, for both the laminar and turbulent flows. He determined R1 by equating the rate of loss of 

momentum to the thrust of pressure, not taking into account the surface tension (significant factor in the 

single-layer fluid but not present here), and assuming that H1 << H2. He also assumed that the radial width 

of the jump can be ignored, which may not be the case here (see Fig. 5 for comparison of r3 and r1). His 

comparison of theory and experiments is repeated here in Fig. 11, i.e. Watson’s (1964) Fig. 4, with a 

being the nozzle radius (here anoz), Re the Reynolds number of flow in the nozzle (here Renoz), r1 position 

of the jump (here R1), and d the depth outside the jump (here H2). In two-layer fluid experiments his 

theoretical relations can be written as (see his Eqs. 41 and 42): 
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From Table 1 it can be seen that Reynolds numbers in our experiments are of order of magnitude less than 

his, due to the lower flow rates used. The observed R1 are here from 0.5 to 2 cm (Fig. 9a), while in his 

experiments their range is ≈ 2.5-18 cm (1-7 in.). Measurements of d in his experiments gave results of ≈ 

0.33-1.65 cm (0.13-0.65 in.), and here H2 was estimated as ≈ 0.04-0.06 cm. The differences between his 

and our measurements result mainly in shifting our calculated values given in Eq. 9a to the right (Fig. 12) 

of his theoretical curve (Fig. 11). As for the values of B, their range (-1.55 to -2) is close to his values 

( 5.2 - 2 , Fig. 11, equivalent to the span of -1.5 to -2 in Fig. 12), and also with similar, but slower, linear 

decay. These results indicate that the analogous theoretical relation might also hold for the jump radius of 

the problem studied here. 

Figures 13 and 14 show some of the parameters already calculated using the density ρ2 ≈ 1.10544 

gcm-3 (δρ ≈ 0.097) for flow rate Q100, but now compared with the results for reduced density of salty 

water, ρ2 ≈ 1.05044 gcm-3 (δρ ≈ 0.05). We see that the functional dependence of R2 on H2 remains the 

same, i.e. there is “dynamical similarity” of experiments with and without the pie dish (Fig. 13a, asterisks 

and circles, respectively). However, the critical values of both R2 and H2 are greater for the lower density 

of salty water (Fig. 13a, black). There is also clear dependence of upstream Froude number, Fr1, on 

density difference between salty and fresh water (Fig. 13b). As can be expected from theory (Eqs. 3 and 

5), decreasing ρ2 results in increase of critical Fr1 from 8-10 for δρ ≈ 0.097 (Fig. 13b, red) to 12-14 for δρ 

≈ 0.05 (Fig. 13b, black). As before, the values of Fr2 are below 1 and without significant correlation with 

R2 (not shown).  
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Figure 11. Watson’s (1964, Fig. 4) 

comparison of experiment and theory for 

jump relation (single layer, laminar 

flow). Here a is the nozzle radius (≈ 0.3 

cm), R is the Reynolds number, g is 

gravity and d is the depth of fluid outside 

the jump (here corresponding to H2). 

 

 
 

 
 
Figure 12. Comparison with Watson’s results, with error bars (see Fig. 11). The rest as in Figure 6. 
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Figure 13. a) Dependence of outer jump radius, R2 (with error bars), on H2; b) upstream Froude number, Fr1 (with 

error bars), versus inner jump radius, R1. Pump setting in both plots is 100 (Q100 = 0.828cm3s-1, Renoz = 232.20), for 

the experiments without (circles) and with the pie dish (asterisks). Results for ρ2 ≈ 1.10544 gcm-3 (δρ ≈ 0.097) are in 

red, and for ρ2 ≈ 1.05044 gcm-3 (δρ ≈ 0.05) are in black.  
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Figure 14.a) Comparison with Watson’s results, with error bars (see Fig. 11); b) evolution of q (Eq. 9), with error 

bars, in time. The rest as in Figure 13. 



 

 

261

Not only the critical values of R2 (and R1, Fig. 13a) are greater when the density difference is 

decreased; it is also the case for q (Fig. 14b, black), with values of ≈ 1.3-1.4 for both the pie dish 

(asterisks, dashed line) and the square tank only (circles, solid line). These increased values affect the 

theoretical predictions based on Watson’s (1964) relations (Eq. 9) by placing the results for δρ ≈ 0.05 (Fig. 

14a, black) below the ones for δρ ≈ 0.097 (Fig. 14a, red). 

 

4. Conclusions and recommendations for future experiments 
 

The circular hydraulic jump has been the subject of many theoretical, experimental, and lately numerical 

studies. Still, many facets of it remain unexplained or unexplored. In this experimental study we tried to 

describe some of the features of the circular internal jumps in two-layer fluid, and explore the possibility 

of their occurrence in fluid with continuous stratification. 

In the two-layer case, both qualitative behaviour and calculated parameters show dependence on 

the flow rates and density differences used. Increasing Reynolds number in the nozzle (for the same 

density difference) or decreasing the density difference between fresh and salty water results in 

destabilizations of the flow, which can be seen as the cusp-like deformations and narrow, quickly varying, 

waves within the internal ring of the jump (Fig. 4a and 4b). The onset of instabilities seems to depend 

more on the density difference than on Reynolds number. Results for upstream Froude numbers (Figs. 9b 

and 13b) seem to confirm those observations. Although there are differences in values of R and H (and 

consequently Fr1, Eq. 3) when the pie dish is used in experiments, the overall dynamic behaviour also 

seems to be similar (Figs. 8 and 13a). The time evolution of jump amplitude q (Eq. 9), although not 

completely precise because of uncertainties in determining the outer wave radii, still indicates that the 

maximal values are reached just before the transition into turbulent regime (≈ 1.1-1.4). In all experiments, 

no clear indication of rotor formation has been observed. 

The experiments where the sharp density difference was smoothed by diffusion show no 

observational evidence of stationary waves (Fig. 7), implying that the stationary, laminar waves cannot 

occur in continuously stratified fluid. Still, it would be recommendable to further verify these 

observations by repeating the experiments in fluid with the known (prescribed or measured) density 

gradient. 

 The above conclusions for two-layer fluid, however, have to be taken with some caution, because 

their derivation is based not on measured values of fluid depth, but their estimates from the dispersion 

relation for inviscid fluid (Eq. 8). The direct measurements of the depth of salty fluid would therefore be 
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very useful for investigating the role of viscosity, and revealing the jump structure itself. Craik et al. 

(1981), in their experiments for single-layer fluid, used a laser dye absorption for measurements of the 

height profile and thus the jump radius. Bloom and Burns (1997) also recommended this method in their 

experimental report. The method works by scanning a laser perpendicular to the tank bottom, and reading 

the intensity of transmitted light. The presence of dye in the fluid then makes the amount of light 

absorbed directly proportional to the fluid height. For the two-layer fluid, the laser should perhaps be 

aimed through side walls of the tank, and due to differences of refractive indices for salty and fresh water 

the dye might not be necessary at all. 

Ideally, the experiments would have to be conducted in a circular tank, large enough so the 

circulation caused by the side walls would not significantly affect the jump patterns. Also, the great 

sensitivity of experiment on disturbances from its surroundings makes it necessary that the support base 

for the tank is stable, and attenuating vibrations. In this experimental study we have only explored 

moderate Reynolds numbers (of order 102); it would be worth to explore the behaviour for the higher 

Reynolds numbers by increasing the radii of nozzles used. Further experimental investigation, as well as 

the developed theoretical model to verify the observations against, would be very useful in revealing the 

dynamics of this interesting phenomenon. 
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Length and Shape of a Lava Tube

Miranda Holmes

Summer 2007

Abstract

We study a model of a viscous melted substance flowing in a cold
circular tube. As the fluid flows, it cools and solidifies at the tube radius,
and we investigate the question ‘how far can the fluid flow and remain
liquid?’ A theoretical solution is derived for the radius of the liquid tube
and the temperature profiles in the liquid and the solid. It is shown that
if the fluid is maintained at constant flux, the tube can be infinitely long,
but if it is maintained at constant pressure difference across the length of
the tube, then there is a maximum length which depends on the Peclet
number and a dimensionless temperature. The stability of the steady-
state profiles are investigated, and it is shown that the linear stability
of the tube radius can be determined from the functional relationship
between pressure and flux. Numerical simulations are performed to test
these predictions.

1 Introduction

Lava tubes are a common feature in basaltic lava flows. When a long, slow erup-
tion supplies a steady stream of low-viscosity lava, the flow tends to concentrate
in channels. If the channels roof over and become encased in solid material,
then the tube of fluid is thermally insulated and can transport hot lava a long
way with little loss of heat. An insulated tube such as this can also form in
pahoehoe (sheet) flows, without first flowing in a channel, when the sheet cools
and gradually restricts the fluid to narrow regions in the interior. These lava
tubes can feed flows that are far away from their source, making the extent of
a volcanic flow much greater than if the lava were to flow as a slab. [10]

It is common to find lava tubes with lengths of 10-30km, but some tubes
are much longer. The Mauna Loa flow tube, in Hawaii, is over 50km long, and
the Toomba and Undara flows in Queensland, Australia are 123km and 160km
long respectively. The longest known tube is over 200km long, on the volcanic
region of Alba Patera, Mars.

We would like to address the question: how long can a lava tube be? If the
geometry of the environment were not a factor, how far could a flow of liquid,
which is embedded in a solid of the same material, transport hot fluid before
cooling and solidification arrests the flow? Previous studies have looked at the
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temperature distribution within a tube of constant radius ([13], [4]), the velocity
profile of flow in a constant-width channel ([11]), the driving pressure required to
keep open a short, constant radius tube of pillow lava ([7]), the cooling processes
operating along the length of a tube ([6]), the effect of temperature-dependent
viscosity on flow localization ([16], [5], [17]), and the time-dependent melting or
solidification of flow through a two-dimensional slot with cooling at infinity ([2],
[3], [9]). We will expand on these studies by allowing the radius of the tube to
vary, and by providing the appropriate boundary conditions so that we can look
at the problem in steady-state. We will ignore the temperature dependence of
viscosity, so as to isolate the effect of melting and solidification processes at the
boundary of the tube, and their relationship to the heat advected through the
tube and conducted radially outward.

We will construct an idealized model of a tube, find a solution for the shape
of the tube and conditions for its existence, investigate the stability of the tube,
explain the results of our numerical simulations, and finally discuss extensions
of the model and ideas for further research.

2 The Model

2.1 Setup and equations

We will model a lava tube as a tube of a fixed length L with a perfectly circular
cross-section, whose radius a(x) may depend on the distance down the tube.
Liquid enters the tube at a uniform initial hot temperature Ti and it flows
through the tube with a velocity profile ~u, to be determined. We suppose that
the tube is embedded in a solid, made of the same material as the liquid, which
is a large cylinder of radius r0. The boundary of this cylinder is maintained
at a constant temperature T0, which is colder than the melting temperature.
The temperature varies continuously from T = T (0, x) > Tm at the center of
the tube, which is liquid, to T0 at the edge of the cylinder, which is solid. The
radius of the liquid tube is exactly the isotherm T = Tm. (See Figure 1).

Some justification needs to be made for our assumptions and choice of bound-
ary conditions. On the tube boundary, we have chosen to have a clear distinction
between solid material and liquid material, rather than to vary the viscosity and
so to have a transition region. While we acknowledge that the viscosity change
with temperature may be a factor, particularly in the formation of a tube or
channel, we assume that once the tube has been formed, the increase in vis-
cosity from its solid-like state to its liquid-like state is rapid enough that the
fluid can be modelled as a two-state material with a simple cutoff solidification
temperature. ([9]). The melting temperature is chosen to be the temperature
at which the amount of crystallization in the lava exceeds 55%. This is based on
observations that the lava behaves as a fluid until the amount of crystallization
exceeds a threshhold, at which point its crystalline network is strong enough
that it behaves as a brittle solid, and is not susceptible to erosion by the shear
forces in the flow. ([13])

265



L = length of tube
r0 = radius of cylinder
Ts = melting temperature
Ti = temperature of fluid entering tube
T0 = temperature of outer boundary

∆P = pressure difference across tube
Q = flux through tube
µ = viscosity of fluid
κ = thermal diffusivity of material (assumed equal for solid and liquid)
ρ = density of liquid

cp = heat capacity of liquid
LH = latent heat of fusion

Table 1: Parameters used in the model

The boundary condition on the edge of the cylinder of constant temperature
was chosen for two reasons: (i) The difference between the eruption temperature
Ti and the melting temperature Tm is an order of magnitude smaller than the
difference between Tm and the ambient conditions, represented by T0. ([13]).
This implies that it is the processes within the tube, and not the environment,
which are limiting the cooling, so any heat lost to the walls of the cylinder can
be conducted away as fast as it is generated; and (ii) It corresponds to the exper-
iment set up by Jack Whitehead. It is not intended to reproduce the conditions
of a real tube, which lives in a much more inhomogeneous environment, and it
generates a singularity when combined with the constant temperature boundary
condition at the entrance, but it allows us to investigate the properties of such
an ideal tube before adding in the complications of a more detailed heat flux
function or a model of the source of lava.

We choose the lava tube to have a fixed length L, rather than to vary it
dynamically, because often the length of a lava tube is set by factors external to
the flow. For example, the slope of the terrain may increase abruptly, causing
the lava to pour out of the tube and begin a new sheet flow, or the tube may
reach the ocean and drain as a pillow lava flow.

We now introduce the equations of the model.
The variables in the system are:

~u(x, r) = velocity field in tube
T (x, r) = temperature profile in liquid
Te(x, r) = temperature profile in solid

a(x) = radius of tube

The parameters used in the model are shown in Table 1.
When solving for these variables, we are looking for steady-state, axisym-

metric solutions, so time derivatives and azimuthal derivatives will be ignored.
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Figure 1: Top: Cross-section of the lava tube through its center line. Bottom:
Cross section of the tube at constant x

We will also assume that changes in the radial direction are much greater than
changes in the axial direction, so x-derivatives are ignored when they are of
the same order as r-derivatives. In particular, we will ignore conduction in the
x-direction.

We solve the equations for each of the velocity, temperatures, and radius in
turn.

Velocity The viscosity of lava is high enough that we expect to be able to
neglect the nonlinear terms in the Navier-Stokes equations. We also expect
laminar flow because the Reynolds number of lava flowing in a tube is order
100, much less than the transition to turbulence in a circular pipe, which occurs
at Re = 2000 to 4000. ([13],[7]) Indeed, the velocity of lava in a channel has
been shown to conform very well to the parabolic profile predicted by assuming
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a laminar Newtonian fluid ([11]), and we expect the same to hold true for a
tube.

Thus, the along-tube component of velocity satisfies

Px = µ
1
r

∂

∂r
(r

∂u

∂r
) , u = 0 at r = ±a(x) (1)

Solving this gives

u =
−Px

4µ
(a2(x)− r2)

Integrating u from r = 0 to r = a(x) gives a relationship between the flux
and the pressure:

Px = − 8µQ

πa4(x)
(2)

We can use this to express u as

u =
2Q

πa2
(1− (r/a)2) (3)

The radial component of velocity can be solved for using the condition of
non-divergence:

v =
2Qa′r

πa3
(1− (r/a)2)

In non-dimensional form (see (9)), u is

u =
PeκL

a2
0a

2
(1− h2) (4)

External Temperature Field The temperature field in the solid, neglecting
x-derivatives, satisfies a diffusion equation:

κ
1
r

∂

∂r
(r

∂Te

∂r
) = 0 , Te|r=r0 = T0 , Te|r=a(x) = Ts (5)

This can be solved to give

Te =
T0 − Ts

ln r0
a(x)

ln
r

a(x)
+ Ts (6)

Or, in non-dimensional form (see (9)),

Te =
K

ln r0
a(x)

ln
r

a(x)
(7)

where K = T0−Ts

Ti−Ts
is a non-dimensional constant relating the amount of

cooling by the boundary condition to the amount of heating from the incoming
lava.

268



Internal Temperature Field The internal temperature field is given by a
balance between advection and diffusion:

u
∂T

∂x
+ v

∂T

∂r
= κ

1
r

∂

∂r
(r

∂T

∂r
)

T |r=a(x) = Ts , T |x=0 = Ti ,
∂T

∂r
|r=0 = 0 (8)

Before solving for T (x, r), we first do a change of variables:

h =
r

a(x)

This will prove to be very convenient, as the streamlines of the flow are lines of
constant h, so we will end up with only one partial derivative in the advection
term. After the change of variables, and substituting u = 2Q

πa2 (1 − h2), the
equation becomes

2Q

κπa(x)2
(1− h2)

∂T

∂x
=

1
a(x)2

1
h

∂

∂h
(h

∂T

∂h
)

We will non-dimensionalize with the following:

x = Lx′

a(x) = a0a
′(x)

T − Ts

Ti − Ts
= T ′

Q = Pe
κLπ

2
q′ (9)

P = ∆PP ′

Here, a0 is a typical scale for a(x), usually chosen to be r0. The pressure
was non-dimensionalized with a typical pressure difference across the length
of the tube, and the flux was non-dimensionalized so that it has a nice form
when related to P - the scale is likely not representative. The non-dimensional
parameter Pe is a modified Peclet number, which we will simply call the Peclet
number, and is defined to be

Pe =
∆Pa4

0

4κµL2
(10)

After dropping the primes, we can write the equations in terms of either P
or q as

PeP∫ 1

0
1
a4

(1− h2)
∂T

∂x
=

1
h

∂

∂h
(h

∂T

∂h
) (11)

q(1− h2)
∂T

∂x
=

1
h

∂

∂h
(h

∂T

∂h
) (12)
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with boundary conditions

T |h=1 = 0 ,
∂T

∂h
|h=0 = 0 , T |x=0 = 1 .

The pressure difference across the tube, P , is related to the flux by

P =
q

Pe

∫ 1

0

1
a4

dx (13)

We can solve (11) or (12) by separation of variables. We show the solution
for (12) because it is simpler; to obtain the solution for (11) we simply substitute
PeP/

∫ 1

0
1
a4 for q.

The temperature field that solves the equation is

T (x, h) =
∑

n

Ane−λ2
nx/qφn(h) (14)

where λn, φn are the eigenvalues and eigenvectors of the problem and An

are constants that are determined from the initial temperature distribution. See
the Appendix for a discussion of the eigenfunctions.

Radius of Tube The rate of change of the radius of the tube is proportional
to the difference in heat flux at the boundary of the tube. This heat flux
should be the heat flux in the normal direction, but using our slowly-varying-
in-x assumption, we take it to be the flux in the radial direction only. The
time-dependent equation for the radius is a standard Stefan equation (see [15]):

LH

cp

da

dt
= κ

(
∂Te

∂r
|r=a(x) −

∂T

∂r
|r=a(x)

)
where LH is the latent heat of solidification, and cp is the heat capacity.
In steady-state, and with our change of variables and non-dimensionalization,

this becomes

∂T

∂h
|h=1 =

∂Te

∂h
|h=1 (15)

From (6) and (14), we can calculate

∂T

∂h
|h=1 =

∑
n

Gne−λ2
nx/q , Gn = Anφ′n(1)

∂Te

∂h
|h=1 =

K

ln r0/a(x)
=

−K

ln a(x)

Substituting into (15) and solving for a(x) gives
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a(x) = exp

(
−K

∂T
∂h |h=1

)

= exp
(

−K∑
Gne−λ2

nx/q

)
(16)

Before proceeding, we remark that our steady-state model, defined by (4),
(7), (11), and (15), depends on only two non-dimensional parameters:

Pe =
∆Pa4

0

4κµL2
, K =

T0 − Ts

Ti − Ts

The first, the Peclet number, gives the ratio of the horizontal advection of
temperature to the vertical conduction of heat. The greater the Peclet number,
the more heat is being advected through the tube, so we expect the tube to be
more open. The second, which we will call the temperature constant, gives the
ratio between the amount of cooling and the amount of heating. A greater |K|
means stronger cooling, so we expect the tube to be more closed.

2.2 Existence of a Solution

Notice from (16) that a(x) depends on q. If we set q, then we can solve explicitly
for a(x). However, if we choose to set P instead, then q = PeP/

∫
1
a4 , so we must

solve a transcendental equation for a. This may or may not have a solution.
We will show that if we choose to hold ∆P constant, so that P = 1, then the
existence of a solution depends on our choice of Peclet number.

Claim There exists a critical number depending on K, call it Pec(K), such
that

Pe > Pec(K) ⇒ There are 2 solutions for a(x)
Pe = Pec(K) ⇒ There is 1 solution for a(x)
Pe < Pec(K) ⇒ There are no solutions for a(x)

(17)

Proof Consider K to be fixed. We consider the solution (16) to (12), and use
this to plot P as a function of q. We define

f(q) ≡ q

∫ 1

0

1
a4(x, q)

dx

so that

P (q) =
1

Pe
f(q) (18)

We must find a q that solves (18) for p = 1.
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By calculating f ′(q), it is possible to show (see Appendix) that there is a
value of q, call it qc, such that f(q) has a minimum at qc, is monotone decreasing
for q < qc and monotone increasing for q > qc. (See Figure 2 for an example.)

This implies that (18) has two solutions whenever Pe > f(qc) and no solu-
tions if Pe < f(qc). Defining Pec(K) = f(qc) implies the result.

A plot of the critical Peclet number versus K is shown in figure 3. As
expected, when |K| increases the critical Peclet number does too, because there
is stronger cooling.

Figure 2: Top: Steady-state a(x) calculated for several different values of q.
Bottom: Pressure difference across the tube as a function of flux. The pressure
differences for the tubes shown on the left are plotted as starred points. The
pressure calculated from the Leveque approximation is shown with a dashed
line.
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Figure 3: Left: Critical Peclet number versus K. Right: Critical flux versus K.

2.3 Implication for length of a lava tube

From (17), we can calculate the maximum possible length of a lava tube. We
must have

Lmax <

√
∆Pa4

0

4κµPec(K)
(19)

We try to estimate this maximum length in two ways:

1. Assuming the flow is gravity-driven

2. Assuming the flow is pressurized at its source

Variable Range in Literature Value Used
κ 1e-7 - 1e-6 m2/s 1e-7m2/s
µ 30 - 200 Pa·s 100 Pa·s
ρ 1560-2600kg/m3 2600 kg/m3

a0 1-100m 10m
Ti 1150− 1180◦C
Ts 1077-1130◦C
T0 30-100◦C
K -10 to -40
Pec(k) 9.2e4 to 6.4e6

Table 2: Values of some parameters for basaltic lava, and the values used in our
calculations. K is calculated from the temperature data, and Pec is calculated
from K.
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Gravity-Driven flow If the flow is gravity-driven, then the pressure differ-
ence is given by the hydrostatic pressure difference calculated from the change
in height H:

∆P = ρgH

We use the parameters shown in Table 2, and take the radius of the tube
to be 10m. This may be slightly larger than tubes that are most commonly
observed, but many of the longest tubes also have very large radii, sometimes
exceeding 50m ([12]). For a flow that drops 1km, with an initial radius of 10m,
we find that for K = −10 to −40,

L ≈ 30− 250km

This is certainly in the range expected, although it varies a lot with a change
in the parameters. It is therefore likely that a flow is not entirely gravity-driven.

Pressure-Driven Flow There is much evidence that the flow along a lava
tube has a pressure-driven component, particularly in very long tubes over shal-
low slopes. Features along the tube such as tumuli, and dome-shaped fountain-
ing at tube breakout points, are commonly found along long tubes and indicate
that such tubes are probably fed by a source under high pressure. ([12]) The
source could become pressurized in many ways; for example, if there is a thick
layer of heavy, solid material floating on top of the lava source, or if the lava
originates from an elastic chamber.

It therefore makes sense to consider the pressure to be limited by a certain
value, which is the maximum value that the source can sustsain. We suppose
that our source is surrounded by solid basalt, and choose this value to be the
tensile failure strength of solid basalt:

∆Pcrit = 0.1− 2.5MPa

If ∆P > ∆Pcrit, we expect the magma at the source to break out of its solid
chamber and to develop a new system of tubes and flows.

Using ∆Pcrit as the value of ∆P in our calculation of Pe and using the given
range of K gives an upper bound on the length of a tube of initial radius 10m
as

Lmax ≤ 200− 900km

These values are slightly larger than the longest observed lava flow (of ∼200
km, on Mars), and an order of magnitude larger than a typical lava tube. How-
ever, real lava tubes have much more complicated cooling terms and geometry,
have time-dependent parameters, and are likely not operating at their maximal
capacity, so this shows that our theory is a candidate for a model of the pro-
cesses important in restricting the length of a tube. To properly evaluate the
accuracy of the length predictions, however, one would need to look at data and
values of the parameters for a particular tube.

274



2.4 Shape of a(x)

It is interesting to examine a plot of P (q) and compare it to plots of a(x).
Figure 2 shows plots of a(x) for several values of q. When q is on the branch
where dP

dq > 0, the tube is quite large and has radius comparable to the radius
of the cylinder. As q → qc, the tube gets much smaller, and when q is on the
branch dP

dq < 0, the tube becomes tiny very quickly. In this regime, the pressure
difference required to maintain such a flux increases very rapidly with a small
decrease in flux.

This feature is analogous to that of a fluid whose viscosity changes with
temperature. The size of the tube determines its resistance to the flow, and can
be thought of as its ‘viscosity’. The smaller the tube, the higher its viscosity. In
a high flux regime, the tube’s size, or viscosity, changes little with flux, so the
pressure is determined mainly from the shear forces induced by the flux. As the
flux decreases, a point is reached where the ‘viscosity’ starts to increase rapidly,
dominating the contribution from the flux, so the pressure begins to rise.

Whitehead and Helfrich ([16]) found a curve similar to ours, relating the
flux through a fissure to the pressure drop across it, for a fluid whose viscosity
changes with temperature. Their curve had the same shape except for very
small fluxes, where the pressure reached a maximum and then came back down
to 0 at q = 0.

2.5 Leveque Approximation

When q is large, x/q is small, so we will need to sum up a large number of
eigenfunctions to get a good approximation of the temperature field and tube
radius. Leveque ([8]) found an approximate solution of (12) that is valid when
x/q is very small. He assumed that the change in temperature happened only
within a thin boundary layer of size δ(x/q) near the edge of the tube. He
neglected the curvature term, approximating the flow in this boundary layer as
planar, and used a linear approximation for the velocity field. After introducing
a similarity variable η = (1− h)/δ(x/q), he found a similarity solution F (η) =
T (x/q, h) for the temperature in the boundary layer:

T (x/q, h) = F (η) =
1

Γ(4/3)

∫ η

0

e−γ3
dγ , η =

1− h

δ(x/q)
(20)

δ(x/q) =
(

9
2
h

)1/3

(21)

We can combine this with (16) to obtain an approximation for a(x) near
x = 0. Since a(x) = r0 exp(−K/∂T

∂h |h=1), we find that

a(x) .= r0e
KΓ( 4

3 )( 9x
2q )1/3

, x/q � 1 . (22)

When q is large enough, this gives almost perfect agreement with the exact
solution. Even when q is not so large, the shape still agrees quite well. The
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pressure, however, is not so easily approximated with the Leveque solution.
When q is large, the pressure agrees very well (see Figure 2), but it starts to
diverge as q approaches the critical qc, and fails completely when q < qc as the
Leveque pressure is monotonically increasing.

3 Stability

Once we know the radius of the tube, we would like to know whether this shape
is stable. If we perturb it a little, will it return to steady-state or will it continue
to melt back the walls or to solidify until it plugs up?

To answer these questions we must reintroduce time into the equations. Let
us assume that the velocity field and external temperature adjust instantly to
the radius, and introduce time only into the equations for internal temperature
and radius. If we non-dimensionalize time with the diffusive timescale, so that

t =
a2
0

κ
t′

then the equations become

Tt + q(1− h2)
∂T

∂x
− aathTh =

1
h

∂

∂h
(h

∂T

∂h
) (23)

S
da

dt
=

1
a

(
∂Te

∂h
|h=1 −

∂T

∂h
|h=1

)
(24)

with the same boundary conditions as before.
The non-dimensional Stefan number is

S =
LH

cp(Ti − Ts)

Let us assume that S is large, so we can ignore at in (23), and also that q is
large enough that Tt becomes negligible. Then we only have one time-dependent
equation, (24).

Suppose we start with the radius a(x) that solves the steady problem, and
then we change it a little bit. Will it go back to the original radius? If we
maintain a constant flux q through the tube, then we see that the answer must
be yes. If we increase a(x), then we decrease ∂Te

∂h and we increase ∂T
∂h , (which are

both negative), so da
dt < 0 and a(x) relaxes to its original value. If we decrease

a(x), the signs of the fluxes are reversed and the walls melt back to their original
configuration. This argument is valid at each point x since the heat fluxes in
(24) are local, for constant flux.

However, if we keep the pressure difference across the tube constant, then
a heuristic argument shows that there is a potential for instabilities. Suppose
we increase the radius of the tube a little bit. The conductive heat flux acts
to resolidify it. However, since the pressure difference is fixed, the flux through
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the tube also increases, by (2). Thus, more heat is being advected through the
tube, and this might cause enough melting to offset the conduction terms.

We now investigate the linear stability quantitatively. Let ã(x) = a(x) +
εa1(x), where a(x) is the steady profile for a given q and ε is small. We expand
all relevant terms and variables up to O(ε). Thus

∂Te

∂h
=

K

ln r0/a
+ ε

(
Ka1

a ln2 r0/a

)
q̃ = q + εq

4
∫

a1
a5∫
1
a4

∂T

∂h
|h=1 =

∑
Gne−

λ2
n
q x

(
1 + ελ2

n

x

q

4
∫

a1
a5∫
1
a4

)
Keeping terms of O(ε) in (24) (and ignoring S, or re-defining time by it)

gives

a
da1

dt
=

Ka1

a ln2 r0/a
− x

q

∫
4a1
a5∫
1
a4

∑
λ2

nGne−
λ2

n
q x (25)

Using ∑
λ2

nGne−
λ2

n
q x = −q

∂

∂x

(
∂T

∂h
|h=1

)
= −q

Ka′

a ln2 1/a

we can write this as

da1

dt
=

K

a2 ln2 1/a

(
a1 + xa′(x)

∫
4a1
a5∫
1
a4

)
(26)

This has the form

da1

dt
= c(x)a1 + k(x)

∫ 1

0

j(y)a1(y)dy (27)

where c(x) = K
a2 ln2 a

< 0, k(x) = xa′(x)c(x) > 0, j(x) = 4/a5(x) > 0.

The RHS can be turned into a self-adjoint operator by a simple change of
variables. Let

v(x) =

√
j(x)
k(x)

a1(x)

Then the equation becomes

dv

dt
= Lv ≡ c(x)v + h(x)

∫ 1

0

h(y)v(y)dy (28)

where h(x) =
√

k(x)j(x).

We note the following:
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• Range(c(x)) = (−∞, cm], where cm = sup(c(x)) < 0. This is because
a2 ln2 a = 0 at a = 0, 1 so it has a maximum on a ∈ (0, 1], and K < 0.

• 0 < h(x) ≤ hm. This still needs to be proved - we must show that
limx→0 h(x) < ∞. Numerical solutions indicate that it should be true.

Thus, although L is an unbounded operator on L2(R), the Fredholm com-
ponent h(x)

∫
h(y)v is bounded. We could truncate c(x) at some finite value

to obtain a bounded operator, and then we could apply the spectral theorem
to represent the solution in spectral space. We won’t need the boundedness of
L to calculate its spectrum, however, so we leave it in its unbounded form for
now.

We make the following claims about the spectrum of L.

Claim

• The point spectrum of L consists of one eigenvalue λ0, with corresponding
eigenfunction h(x)

λ0−c(x) . λ0 is the solution to
∫ h2(y)

λ−c(y) = 1, and λ0 > cm.

• The continuous spectrum is equal to Range(c(x)).

• There are no other points in the spectrum.

Proof To see that h(x)
λ0−c(x) is an eigenfunction, simply calculate: Lv = c(x)h(x)

λ0−c(x)+

h(x)
∫ h2(y)

λ0−c(y) = λ0h(x)
λ0−c(x) .

To see that there is only one such λ0 > cm solving f(λ) =
∫ h2(y)

λ−c(y) = 1, note

that limλ→cm
f(λ) = ∞, limλ→∞ = 0, and f ′(λ) = −

∫ h2(y)
(λ−c(y))2 < 0.

To show that λ = c(x0) is in the continuous spectrum, we show that λ− L
cannot have a bounded inverse. We do this by providing a sequence {vn} ∈ L2

such that ‖vn‖ = 1 and ‖(λ−L)vn‖ → 0. Letting vn = bn1(x0−δn,x0+δn), where
2δnbn = 1, δn → 0, and using the continuity of c(x) does the job.

To show that this is the entire spectrum, we show that if λ /∈ {c(x)} ∪ {λ0},
then λ− L has a bounded inverse.

Let

Tv ≡
v +

∫ h(y)v
λ−c(y)/

(
1−

∫ h2(y)
λ−c(y)

)
λ− c(x)

Then (λ− L)T = T (λ− L) = I, and

‖Tv‖ ≤ 2‖v‖
(λ− cm)2

1 +
h2

m/(λ− cm)2

1−
∫ h2(y)

λ−c(y)


Thus, appealing to the spectral theorem for unbounded operators, we can

express the solution to (28) as
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v(x, t) = A0e
λ0t h(x)

λ0 − c(x)
+
∫

λ∈Range(c(x))

Aλeλtφ(λ, x)dλ (29)

where φ(λ, x) are the distributions corresponding to the continuous spec-
trum.

Since the continuous spectrum is always negative, the stability of the problem
is determined entirely by the sign of the largest eigenvalue, λ0. It is possible to
show that

Claim

dP

dq
> 0 ⇒ λ0 < 0 (stable)

dP

dq
< 0 ⇒ λ0 > 0 (unstable)

Proof See Section 8.3 in the Appendix for a proof given general heat flux and
pressure relationships.

It is helpful to change back to our original variables to see the structure of
the discrete eigenfunction. In the original variables, it becomes

xa′(x)
c(x)

λ0 − c(x)

Since xax + qaq = 0, it is also proportional to

aq
c(x)

λ0 − c(x)
=

aq

λ0
c(x) − 1

Thus, if λ0/c(x) ≈ const, which can happen if λ0 � cm, for example, (since
c(x) changes slowly over most of its range), then the most slowly-decaying per-
turbation is almost in the direction of the nearest steady profile.

4 Numerical Simulations

Numerical simulations were performed to test the stability predictions. The
pressure difference was kept constant, and the tube radius was stepped forward
in time using (24). Time derivatives were calculated using forward Euler, the
trapezoidal rule was used for integration, and 1000 eigenfunctions were used to
calculate the heat flux and steady profiles. 40 points were used to represent the
tube in the horizontal. The simulations were stopped if the tube ‘plugged up’ -
defined to be when a(x) = 0 for some x.

The numerical simulations confirm the theoretical predictions. If we start
with a profile that is linearly stable and perturb it a little, it returns to its
original state. We can even perturb it a lot, provided the perturbation is not
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too negative, and it will return to the steady state. If the perturbation is too
much in the direction towards 0, however, then the tube plugs up - this seems
to happen when

∫
1
a4 for the perturbed profile is too large. It is hypothesized,

though not shown, that if the initial flux q0, calculated from q0 = P/
∫

1
a4
0
, where

a0 is the initial profile, is smaller than the flux qunstable corresponding to the
unstable profile for a given P , then the tube will plug up.

If we start with a profile that is predicted to be linearly unstable and perturb
it a little, it moves away from the unstable state. Which way it moves depends
on how we perturb it. If the perturbation is mostly positive, in the direction of
the stable profile corresponding to the same value of P , then it opens up, and
moves to the stable profile. If the perturbation is mostly negative, away from
the stable profile, then the tube plugs up.

As the tube moves from one profile to another, its shape is always close to
that of a steady profile. Any localized disturbances to the profile are rapidly
ironed out. This is consistent with the linear theory, which predicts large neg-
ative eigenvalues in the continuous spectrum, which appears to be associated
with highly localized eigenfunctions.

5 Extensions of the model

5.1 Chamber Dynamics

We can introduce more dynamics into the problem by allowing the pressure to
change. One simple modification is to assume the pressure is given by the height
of lava in a lake, which is fed by a fixed flux q0, or that the lava fills an elastic
chamber whose pressure depends on how much lava is inside. In both cases, we
can write the equation for the change in pressure as

γ
dP

dt
= q0 − q(t) (30)

where γ is a non-dimensional constant related to the characteristics of the
magma chamber, such as the area of the lake or the elasticity of the chamber.
The ratio S/γ tells us the rate of change of pressure compared to the rate of
change of the radius.

Numerical simulations show that if the lake is fed with a flux q0 that is in
the stable regime, q0 > qc, then the tube converges to a tube with a radius
a(x, q0), as long as it starts off with a great enough radius. If the lake is fed
with a flux that is too small, q0 < qc, then every tube plugs up no matter
how great its initial radius. Although the system showed growing or decaying
oscillations for certain choices of γ/S, no limit cycles were observed, as was the
case in the simulations performed by Whitehead and Helfrich ([16]). This is
probably because, unlike their pressure-flux relationship, which had an extra
stable regime near q = 0, our pressure-flux relationship lacks a second stable
branch that can help to sustain oscillations.
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We also tried setting q = 0 to see how fast a lake can be drained by a lava
tube. It was never possible to drain the lake; the tube plugged up rapidly as
soon as the pressure dropped below the critical value.

5.2 Branching Tubes

Whitehead and Helfrich ([16]) performed an experiment in which they let hot
paraffin flow radially outward from a source. After a certain time, the paraffin
was cool and viscous enough to be considered a solid, except in a few locations
where it flowed rapidly in channels. Initially there were several channels, but
as time progressed they all closed up except for one, which continued to flow
indefinitely.

Wylie et al ([17]) performed a similar experiment, in which they showed that
flow of liquid wax tends to concentrate in a single, narrow finger, with the rest
of the flow almost stagnant.

In real lava flows, networks of tubes are occasionally observed instead of
a single tube. We are interested in the processes that allow or inhibit several
tubes to exist simultaneously. Under which combinations of parameters is it
more favourable to feed a flow with several tubes, rather than a single big one?
Is there an optimal density of tubes that we should expect? Answers to these
questions would help us not only to understand the size and emplacement of
lava tubes, but also the location and spacings of volcanoes themselves, as these
are formed when a localized tube of lava flows up a fissure in a dike.

We have constructed a simple model in an attempt to answer these questions.
Since this work is in its beginning phases, we outline the ideas only briefly so
that they can be pursued later in more depth.

We suppose we have a series of n identical tubes, all parallel to the x-
direction, which are located at points {yi} along the y-axis. We can non-
dimensionalize y so that the points lie between 0 and 1. The tubes are fed by
flow through a pipe which lies along the y-axis. There is a uniform flux per unit
length q0 into the pipe. The pressure difference across each tube is given by the
pressure Pi at its corresponding point on the pipe. The flux through each tube
qi is determined by the pressure through some relationship, Pi = fi(qi), such as
(13). This in turn determines the flow through the pipe, which determines the
pressure in the pipe.

We need a relationship between the pressure in the pipe and the flux through
the pipe. Let us assume the flow in the pipe is Poiseuille flow. We then have

Py = −γq(y)

where γ is a non-dimensional parameter related to the size of the pipe com-
pared to the sizes of the tubes.

We can calculate that the flux in the pipe is given by

q(y) = q0y −
∑

qi1y>yi
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(assuming that r0 is small enough that we can neglect the modification to q
near the entrance of a pipe).

Thus

P (y) = P0 − γ

(
q0

y2

2
+
∑

qi(y − yi)1y>yi

)
where P0 is the pressure at 0. Let Pf be the pressure at y = 1. Our full set

of variables to solve for are

P0 , {Pi}i=1..n , Pf , {qi}i=1..n

The equations we have to solve for them are

{Pi = P0 − γ

(
q0

y2
i

2
+
∑

qk(yi − yk)1yi>yk

)
}

Pf = P0 −
q0

2
+
∑

qk(yi − yk)

{Pi = fi(qi)}

We can add one more equation, so we add conservation of mass:∑
qi = q0

These equations were modelled on Matlab, and a solution can be found given
the locations of the tubes {yi}.

We next want to add time into the system. One way to do this is to let
the relationship Pi = fi(qi) depend on time, so that fi = fi(qi, t). In our
simulations, we included time in the pressure-flux relationship by simulating
the dynamics of each individual tube, and calculating the pressure as Pi =
qi

∫
1/a4

i (x, qi, t)dx. Our procedure was to solve the system given initial tube
profiles, use the calculated values of pressure to step the tube radii forward in
time, and repeat using the new radii.

Figure (4) shows some of our results for γ = 1. We started with 50 identical
tubes at locations chosen randomly from a uniform distribution in (0, 1), and
provided a flux per unit length that was enough to sustain 6 tubes in a stable
configuration. Most of the tubes plugged up, and we ended up with 5, or
occasionally 4, tubes in a steady flow. The model showed strong localization:
almost all of the time the 5 tubes were sequential points, and only in a very
small number of runs did they split into 2 groups.

5.3 2D Planar Flow

There are several situations in which we may be interested in a type of lava
transport which could be modelled as a 2-dimensional ‘tube’. One is when lava
flows down a slope as a sheet, and is homogeneous in the cross-sheet direction.
Another is when a volcano erupts and send lava up a long, narrow fissure. The
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shape and thermal properties of the 2-dimensional system should be susceptible
to an analysis similar to the 3-D case. We looked at the equations for the
2D system in the hopes that they would have similar results to the 3-D. We
were surprised to find that they were actually harder to analyze than the 3-D
equations, but preliminary calculations suggest that they may share the same
qualitative characteristics.

The 2-D equations use the same non-dimensionalization, except for a slight
change. The Peclet number is modified to be

Pe =
2∆Pa4

0

3κµL2

The external temperature equation solves ∂2Te

∂h2 = 0, Te|h=r0/a = K, Te|h=1 =
0, and has solution and consequent flux

Te =
Ka(x)(h− 1)

r0 − a(x)
,

∂Te

∂h
=

Ka(x)
r0 − a(x)

The internal temperature equation and the relationship between P and q
are

a(x)q(1− h2)Tx =
∂2T

∂h2

q =
PeP∫

1
a3 dx

The internal temperature is thus

T (x, h) =
∑

n

An exp
(
−λ2

n

q

∫ x 1
a(s)

ds

)
φn(h) (31)

where λn, φn are the eigenvalues and eigenvectors of the problem, solving

φ′′ − λ2(1− h2)φ = 0 , φ(1) = 0 , φ′(0) = 0

and An are determined from the temperature distribution at x = 0. These
eigenfunctions are discussed in Shah and London ([14]).

Unfortunately, a(x) appears in the solution for T . This means that even if
we are given the flux, we may not be able to solve for a(x). We find that

Ka(x)
r0 − a(x)

=
∑

n

Gn exp
(
−λ2

n

q

∫ x 1
a(s)

ds

)
,

Gn = Anφ′n(1)

⇒ a(x) =
r0

∑
AnRn exp

(
−λ2

n

q

∫ x 1
a(s)ds

)
Kr0 +

∑
AnRn exp

(
−λ2

n

q

∫ x 1
a(s)ds

) (32)
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This is a transcendental equation that defines a(x). It may or may not have
a solution, and the solution may or may not be unique. A simple argument
shows that it probably does not have a solution in all of parameter space.

Suppose the initial temperature distribution is such that it is made up of
only one eigenfunction. (This would also be the case if we start the experiment
far down the tube, where the other eigenfunctions have decayed exponentially.)

We must solve

G1 exp
(
−λ2

1

∫ x

0

1
qa(s)

ds

)
=

Ka(x)
r0 − a(x)

(33)

for a(x). Taking the derivative of both sides and substituting for the expo-
nential gives

da

dx
− λ2

1

qr0
a = −λ2

1

q

Solving and using initial condition a(0) = G1
K+G1

r̄, obtained by setting x = 0
in (33), gives

a(x) = r0

(
1− K

K + G1
e

λ2
1

q x

)
In order for this to be greater than 0, we need

G1

K
> e

λ2
1

qr0

.
Thus, if q is too small or |K| is too large, we expect there to be no solution.

6 Conclusions

We have created a simplified model of the heat transport in a lava tube, and
used this to investigate the existence, shape, and maximal possible length of a
lava tube. This model predicts a functional relationship between the pressure
difference across the length of the tube, and the flux of fluid through the tube
in steady-state, such that for large values of the flux, dP

dq is positive, for small
values it is negative, and P has a minimum at q = qc, which depends on a
non-dimensional temperature constant. This curve tells us whether or not, for
a given non-dimensional Peclet number, a steady-state lava tube can exist. It
further tells us when such a solution is stable to small linear perturbations:
when q > qc the tube is stable and when q < qc the tube is unstable. These
linear stability predictions were confirmed with numerical simulations. Unstable
tube shapes either went to the stable state corresponding to the same pressure
difference, or plugged up and ceased to exist. The maximal length of a lava
tube was estimated for typical values of the parameters, and was found to be
approximately 30-900km, depending on the assumptions.

284



7 Acknowledgements

Thank you to Jack Whitehead, for supervising this project, as well as to Lou
Howard, Norman Lebovitz, and Ted Johnson for many helpful suggestions and
discussions. Many thanks also to WHOI and the GFD program for the oppor-
tunity to participate in this program.

8 Appendix

8.1 Eigenvalues of the temperature problem

The eigenfuctions are solutions of

φ′′ +
1
h

φ′ + λ2(1− h2)φ = 0 , φ(1) = 0 , φ′(0) = 0 .

They are given by

φn = e−λ2
nh2/2M(

1
2
− λn

4
, 1, λnh2)

where M(a, b, z) is the confluent hypergeometric function:

M(a, b, z) = 1 +
a

b
z +

(a)2
(b)2

z2

2!
+ . . . +

(a)n

(b)n

zn

n!
+ . . .

(a)n = a(a + 1)(a + 2) . . . (a + n− 1) , (a)0 = 1

and λn are solutions of the transcendental equation

M(
1
2
− λ

4
, 1, λ) = 0 .

It can be shown that

M(a, b, z) =
Γ(b)
Γ(a)

ezza−b
(
1 + O(|z|−1)

)
so

φn(h) =
eλn/2

λnΓ( 1
2 −

λn

4 )
e−

λn
2 (h−1)2

h(1+ λn
2 )

(
1 + O(

1
λnh2

)
)

The eigenfunctions are orthogonal with respect to weighting function h(1−
h2).

See Chapter 13 of Abramowitz and Stegun for more information about the
confluent hypergeometric function. [1]

Shah and London ([14]) show that the eigenvalues and initial conditions Gn

can be approximated as
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λn = λ + S1λ
−4/3 + S2λ

−8/3 + S3λ
−10/3 + S4λ

−11/3 + O(λ−14/3)

Gn =
C

λ
1/3
n

(
1 + B1λ

−4/3 + B2λ
−6/3 + B3λ

−7/3 + B4λ
−10/3 + B5λ

−11/3 + O(λ−4)
)

where
λ = 4n + 8/3

S1 = 0.159152288
S2 = 0.011486354
S3 = −0.224731440
S4 = −0.033772601
C = 1.012787288

B1 = 0.144335160
B2 = 0.115555556
B3 = −0.21220305
B4 = −0.187130142
B5 = 0.0918850832

They also list more accurate values of these numbers for the first few eigen-
values.

8.2 Calculation of f ′(q)

We have that

f(q) = q

∫ 1

0

1
a4(x, q)

Thus

f ′(q) =
∫ 1

0

1
a4

[
1− 4q

∂(ln a)
∂q

]
=

∫ 1/q

0

1
a4

[
1− 4K

∑
Gnλ2

nse−λ2
ns

(
∑

Gne−λ2
ns)2

]
ds

after change of variables s = x/q. Now the only dependence of f ′(q) on q is
in the limit of the integral.

Let

g(s) ≡ K
∑

Gnλ2
nse−λ2

ns

(
∑

Gne−λ2
ns)2

Then

g′(s) =
(
∑

Gneλ2
ns)(

∑
−KGnλ2

n(1− λ2
n)se−λ2

ns) + 2K(
∑

Gnλ2
ne−λ2

ns)(
∑

Gnλ2
nse−λ2

ns)
(
∑

Gne−λ2
ns)3

Using K, Gn < 0 we find that g(0) = 0, g′(s) > 0 (s > 0), g(s) → ∞ as
s → ∞. Thus, we are integrating a quantity which is positive for small s and
negative, going to −∞, for large s, and changes sign only once, so ∃ qc s.t.
f ′(q) < 0 for q < qc, f ′(q) > 0 for q > qc.
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8.3 Derivation of the linear stability equation - general
case

We derive the linear stability problem for a general external heat flux, internal
heat flux, and pressure relationship. We show that if these functions have a
particular form, then the tube radius is linearly stable whenever dP

dq > 0 and
linearly unstable whenever dP

dq < 0.
Let us have the following functions:

a(x, q) : R×R → R = tube radius
P (q, a) : R× C(R) → R = Pressure

E(a) : R → R = External heat flux
I(x, q) : R×R → R = Internal heat flux

We make the following assumptions:

• δP
δa is a linear, positive definite operator from C(R) → R.

• E′a < 0

• ∂a
∂q > 0.

We also suppose that any arbitrary profile evolves in time according to

da

dt
= E(a)− I(x, q) ,

dP

dt
= 0 .

Suppose we start with a steady profile a, with corresponding flux q, and
perturb it by εa1. Let the flux change by an amount εq1. We derive the O(ε)
equation for the evolution of a1. We have that

dP

dt
= 0 ⇒ ∂

∂ε
|ε=0P (q0 + εq1, a + εa1) = 0

⇒ q1
∂P

∂q
+

δP

δa
[a1] = 0

⇒ q1 =
− δP

δa [a1]
∂P
∂q

Thus, a1 evolves according to

da1

dt
=

∂

∂ε
|ε=0 (E(a + εa1)− I(x, q + εq1))

= a1
∂E

∂a
− q1

∂I

∂q

= a1
∂E

∂a
+

δP
δa [a1]

∂P
∂q

∂I

∂q
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Since a satisfies E(a) = I(x, q), we can take the q-derivative of this to get
dE
da

∂a
∂q = ∂I

∂q . We also know that ∂P
∂q = dP

dq −
δP
δa [∂a

∂q ]. Substituting these into the
last equation gives

da1

dt
=

dE

da

(
a1 +

∂a
∂q

δP
δa [a1]

dP
dq −

δP
δa [∂a

∂q ]

)
(34)

Set the RHS equal to λa1 and solve for a1 to get

a1 =
dE
da

δP
δa [a1]∂a

∂q

(dP
dq −

δP
δa [∂a

∂q ])(λ− dE
da )

Let δP
δa [a1] = D. Take δP

δa of the above equation to get

δP

δa

[
−dE

da
∂a
∂q

(dp
dq −

δP
δa [∂a

∂q ])(λ− ∂E
∂a )

]
= 1 (35)

If dP
dq = 0 and λ = 0, then LHS = 1. If dP

dq ↑ or λ ↑, then LHS ↓, and if dP
dq ↓

or λ ↓, then LHS ↑. Therefore

dP

dq
> 0 ⇒ λ < 0 (stable)

dP

dq
< 0 ⇒ λ > 0 (unstable)
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Figure 4: Simulations of systems of tubes. Left: Plot showing initial location of
tubes (top row) and tubes that remained open after a long time (bottom row).
Right: Flux through each tube as a function of time.
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Simultaneous Differential Diffusion under
Weak Turbulence

A. R U I Z - A N G U L O 1

1Department of Mechanical Engineering, California Institute of Technology, Pasadena, CA
91106, USA

We present the results from experimental measurements of simultaneous fluxes of heat
and salt across an interface of a diffusively stable bi-layer system. Turbulence was gener-
ated inside each of the layers by oscillating grids. Time series of temperature and salinity
were taken until both properties came to equilibrium.

1. Introduction
The density of sea-water, ρsw, is a function of temperature, T , and salinity, S. In the

ocean, when mixing of density surfaces occur (diapycnal), temperature and salinity mix
as well. The two properties could either mix at the same rate or at a different rates. In the
presence of turbulence, the larger molecular diffusivity of T might create a preferential
turbulent transfer relative to S. However, the usual formulas used in numerical models
of the ocean specify a transfer independent of diffusivity. If diffusion is incorporated, this
process is often called differential diffusion.

The more familiar double diffusion convection has two important regimes based on
the density ratio (Rρ): Rρ = α∂T∂z/β∂Sz > 1 corresponding to the finger regime
and Rρ = β ∂S

∂z /α∂T
∂z > 1 for the diffusive regime (Turner (1979)). The diffusive and

finger regimes lead to differential diffusion by imposing ’ordinary’ turbulence, i.e., the
kinetic energy driving the the double diffusion is supplied. Turner (1968) and Linden
(1971) found that the convective finger regime could be accelerated and both properties,
temperature and salinity mixed at the same rate for small Ri. The experiments showed
that the action of the turbulence could overcome the heat flux due to the fingers.

Numerical simulations of turbulent mixing models ignore the fact that temperature
and salinity might transport differentially, arguing that for low Richardson number, Ri,
heat and salt fluxes produce an effective coefficient of eddy diffusivity κ ∼ 1. On the other
hand, for weakly turbulent flows –low to moderate Ri– the diffusivity ratio, κT /κS (where
κT and κS are the eddy diffusivities for salt and heat) is less than 1 (Jackson & Rehmann
(2003b), Gargett et al. (2003)). It has been show as well (Jackson & Rehmann (2003a))
that the mixing efficiency is sensitive to the eddy diffusivity; therefore, considering κ =
1 would represent an error on calculations were the mixing regime is not strenuously
turbulent, i.e., Ri > 1.

Recent work has led to a greatly improved understanding of this phenomenon. Zellouf
et al. (2005) presented experiments on single density stratified interface configurations,
where salt and heat fluxes are calculated separately. By finding an effective Richardson
number, Ri, based on the turbulence generated by two grids oscillating on each of the
stable layers they showed that the heat and salt buoyancy fluxes in stratified fluid grid
turbulence possessed two different responses to the mixing. This is similar to that in a
double-diffusive convection system.
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Figure 1. Horizontal rms velocity as a function of the grids frequency. The zero reference corre-
sponds to the initial location of the stratified interface. The length L is measured symmetrically
from the zero reference

Even for configurations where T and S are stable, there is potential for differential
transport of T and S (Merryfield et al. (1998)). The objective of the present work is to
document wether the buoyancy fluxes of heat and salt under mild turbulence are the
same or are different.

2. Experimental setup and technique
Induced mixing experiments were carried out for a diffusively stable bi-layer system.

Before each experiment, half of an insulated tank was filled up with cold and salty water.
On top of that layer, fresh and relatively warm water was slowly poured over a floating
sponge, producing a sharp interface between the two layers. Two grids previously located
in the middle of each layer were oscillated to produce turbulence. The turbulence intensity
is a linear function of the oscillating frequency (see Figure 1).

2.1. Experimental apparatus
All the experiments were conducted in an insulated container made out of styrofoam,
the inner dimensions of the tank were 300 × 300 × 300 [mm], the thickness of the walls
were 25.7 [mm].

For this experiment, the heavier cold and salty fluid was poured into the tank first and
then the lighter warm and fresh fluid was carefully poured on top of the first layer. The
lighter fluid was slowly pumped onto a floating sponge in order to minimize the mixing at
the interface. Figure 3 sketches a typical interface between the two layers. In every case
both layers were of equal depth, 150 [mm]. In these experiments the interface between
the two fluids remained sharp and stable before any oscillations commenced. For all the
analysis the molecular diffusion was neglected. The main goal of this work was to look at
the mixing driven by weak turbulence. Although in the absence of turbulence the mixing
thickness for such a stable configuration grows as O(1/

√
t), all the experiments started

soon after the top layer was completed.
The two grids that generated the turbulence were machined out of a Plexiglas plate,

of thickness 6.43 [mm] and dimensions 100 × 100 [mm]. Figure 2 shows a sketch of the
grid geometry, 16 holes of 12.7 [mm] in diameter were equally distributed on the plate,
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Figure 2. Experimental apparatus. The upper left panel corresponds to one side view of the
experiment, the section AA′ represents a cut right in the centre of the apparatus. The thickness
of the walls is uniform, 25.4 [mm]. The location of the grids correspond to the centre of each
layer. The two grids are identical and a detailed picture with the distribution of the holes is
shown. The detail B shows the top cover of tank and the rod which was coupled to an electric
motor. The lower left panel is the top view of the apparatus.

the separation between centers was 25.7 [mm]. The two grids were connected from the
center by a long rod with 9.52 [mm] in diameter. The location of the grids was at the
centre of each stratified layer where they simultaneously oscillated. Note that both grids
were 75 [mm] away from the interface.

The rod was coupled to a mechanism which converted the rotational motion from
an electric motor into a periodic linear vertical displacement. The displacement length,
the stroke, was set to 10 [mm] for all the experiments. The motor was connected to
a variable speed device which allowed us to adjust the grid oscillating frequency. For
all the experiments the oscillating frequency ranged from 1 − 3 [Hz]. The precision of
this controlling device combined with the friction of the mechanism produced errors in
the frequency around 10%. For each experiment, the oscillating frequency was measured
by recording the sound produced by the mechanism every cycle. The sound signal was
recorded, filtered and a simple spectral analysis was performed resulting on the oscillating
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Figure 4. Recorded sound signal and the resulting filtered one (left panel), the corresponding
characteristic frequency obtained by using a typical Fast Fourier Transform (FFT).

frequency. This procedure was repeated several times within every single experiment, the
average of those measurements corresponded to the grids frequency.

The fluid properties were measured from two fixed points located symmetrically about
the interface. Two syringes were placed at the hypothetical centre of each layer, 150
[mm] apart. Similarly, two thermometers were placed at the same height as the syringes,
sharing the same x−y plane.Time series of temperature and density were simultaneously
taken at those two fixed locations.

The temperature changes of each layer were tracked by using a HOBO temperature
logger accurate up to 0.01 [o C] . For all the experiments, the sampling rate was 2
[samples/s]. Both thermistors were programed to start at the same time, their internal
watch corresponded to real time. The evolution of the density with time was tracked by
taking samples of water from the two syringes placed at the centre of each layer. In order
to compare density and temperature time series, an external watch was synchronized with
the internal watch of the thermistors. The sampling rate for the density varied for all the
experiments, approximately 1 − 2 samples every 10 [min]. The sampled fluid was then
analyzed separately with the Anton-paar density meter. The experiment was constantly
running at the same rate for several hours until the quantities approached equilibrium,
those times ranged from 1 − 3.5 [hrs]. The heat losses through the wall were neglected.
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Figure 5. Variations of α (left) and β (rigth) with of temperature and salinity at a constant
pressure (atmospheric). The range of values for T and S spans the experiments presented in this
work
.

The insulation quality of the tank was tested . Therefore, the heat flux with the exterior
was ignored within each experiment.

3. Experimental observations
The initially stable layer, represented in Figure 3, gradually changed once the grids

started oscillating, small incursions of fluid from the lower and upper layer crossed the
interface and transport of heat and salt began. The experiment was designed to be
symmetric; therefore, the flux of heat and salt through the interface was assumed to be
the same for the upper and lower layer.

In order to compare the contribution of density due to temperature and salinity, the
quantities were expressed in buoyancy units. The linear relation for density, ρ, as a
function of temperature, T , and salt concentration, S, is given by Equation 3.1

ρ(S, T )− ρ0

ρ0
= −α(T − T0) + β(S − S0) (3.1)

The coefficients α, thermal expansion, and β, saline contraction, are functions of P , T ,
and S. The coefficient α was pretty sensitive to the changes in T and S, whereas β barley
changed within the experimental range. Those variations are shown in figure 5.

The initial conditions for all the experiments are shown in Table 1. The density ratio,
Rρ†, is defined by the ratio of the magnitude of density due to the temperature difference

† In order to obtain positive ratio of densities, a minus sign was added since ∆ρ < 0 and
∆T > 0
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Experiment
number Rρ N , [1/s] fs, [1/s]

DD01 0.67 0.72 1.18
DD02 0.49 0.83 2.28
DD03 0.34 0.87 1.76
DD04 0.29 1.69 1.58
DD05 0.29 1.04 1.85
DD06 0.23 1.01 1.72
DD07 0.16 1.36 1.66

Table 1. Initial conditions for different experiments. The experiments are sorted by their
density ratio, Rρ. The initial buoyancy frequency, N , and the average oscillating frequency, fs,
are tabulated as well.

across the interface to the density change due to temperature difference,

Rρ = −α∆T

β∆S
(3.2)

where ∆T and ∆S are the initial temperature and salinity jumps across the interface.
Since the coefficient of thermal expansion is a function of T and S, the density difference

due to temperature is defined by α∆T = (αwTw − αcTc). From figure 5 it is possible to
observe that the changes in β within the experimental range of T and S are small.

The buoyancy frequency, N2, is defined by −(g∆ρ)/(ρ0H), where H is the distance
from the interface to the point where the samples are taken, ∆ρ is the difference in
density between the two layers, ρ0 is the average density and g is the acceleration due to
gravity.

The heat flux, FT across the interface is defined by

A
d

dt

∫ 0

H/2

ρccpTcdz = FT A = −A
d

dt

∫ H/2

0

ρwcpTwdz = FT A (3.3)

where A is the area of the interface, cp is the specific heat at constant pressure, ρc and
Tc are the density and temperature of the ‘cold’ layer. Similarly, ρw and Tw are the the
density and temperature of the ‘warm’ layer. Due to the symmetry of the experiment,
the heat and salt fluxes across the interface should have the same magnitude.

A
d

dt

∫ 0

H/2

ρ0Scdz = FSA = −A
d

dt

∫ H/2

0

ρ0Swdz = FSA (3.4)

where S is the salt concentration and the subindices c and w correspond to the cold and
warm layers.

3.1. Differential equilibrium
The state of equilibrium is defined as the absence of fluctuations on the buoyancy quan-
tities, which corresponds to a fully mixed state. For the combinations presented in this
work the equilibrium is reached differently for temperature and salinity.

For a relatively weak stratification and a relatively strong turbulence, the equilibrium is
reached at the same time for temperature and salinity (See Figure 6). On the other hand,
for relatively strong stratification and weak turbulence, differential diffusion occurs. In
Figure 7 it is possible to observe that the buoyancy temperature has reached equilibrium
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Figure 6. Experiment DD03. The upper panel shows the temperature decaying with time and
in the lower layer, the corresponding decay of salinity – both in buoyancy units –. The final
equilibrium state is about the same for both quantities.
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Figure 7. Experiment DD06. The upper panel shows the temperature decaying with time and
in the lower layer, the corresponding decay of salinity – both in buoyancy units –. The final
equilibrium state is different for both quantities.

but the salinity requires more time to become fully mixed. In this case, the differential
transport of the properties is clear.

3.1.1. Constant oscillating frequency
To isolate the effect of the stratification on the experiments, we carried an experiment

where we changed the initial stratification and on average the oscillating frequency re-
mained constant. From Table 1 the experiments taken were: DD03, DD06 and DD07.
The T − S evolution is shown in Figure 8 where the blue symbols correspond to the
cold and salty layer and the red symbols correspond to the warm and fresh layer. The
ordinate corresponds to the temperature in Celsius and the abscissa corresponds to the
salinity in psu units. The contour lines correspond to iso-density (isopycnals) surfaces.
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Figure 9. T − S diagram in buoyancy units for relatively constant oscillating frequencies
.

Figure 9 shows a similar plot as Figure 8 representing a T − S diagram in buoyancy
units. For convenience the origin corresponds to the equilibrium point form both sides,
salinity and temperature. The direction of time travels from the extreme on the curves
towards the equilibrium point.

For relatively high density ratios (Eq. 3.2) and similar oscillating frequency the tem-
perature and salinity reach equilibrium at similar times. The lower the density ratio,
the slower the salinity reaches equilibrium. The ratio of oscillating frequency, fs, to the
initial buoyancy frequency, N , was estimated. The ratio of frequencies is a measurement
of the inertia to the stratification strength; therefore, the larger the frequency ratio, the
faster the quantities come to equilibrium.
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Figure 10. T − S diagram for relatively constant density ratios.
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3.1.2. Constant density ratio
We now look at the influence of the frequency. Note that for the density ratio to be

equal does not mean that the initial conditions are exactly the same. The variations on
the oscillating frequency produced the two expected regimes: differential equilibrium and
non differential equilibrium. In Figure 11 two different experiments, DD04 and DD05, are
shown. The ratio of densities was constant for the two experiments and the oscillating
frequencies were 1.58 and 1.85 Hz. Figure 10 shows the dimensional T − S diagram,
iso− density surfaces were superimposed to show that the mixing process crosses those
lines until it reaches equilibrium. Similarly to the previous section the larger the ratio of
frequencies, the slower the equilibrium is reached.

4. Summary
This study presented controlled laboratory experiments that allowed to observe si-

multaneously the evolution of the heat and salt fluxes across the interface between two
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layers. The diffusively stable layers presented for all the experiments were perturbed by
symmetrically oscillating two grids in the range of 1.2 < fs < 2.2 Hz. The density ratios
spanned the range of 0.16 < Rρ < 0.67.

We separated the effects in frequency perturbed and density ratio perturbed and we
found that for both cases there is a mismatch on reaching the equilibrium for the tem-
perature and for the salinity. We also found that the heat flux decreases monotonically
for all the cases, regardless of the value of fs or Rρ. On the other hand, the flux of salt
tends to be constant for low oscillating frequencies (DD01 and DD04), for the rest of the
experiments the flux of salt increases reaching a maximum approximately at the same
time as the heat flux begins to asymptote.

In the absence of a proper Richardson number, the ratio of frequencies seemed to be
the right parameter to characterize the differential equilibrium

Combined results from numerical simulations, laboratory experiments and geophysical
measurements indicate that, at low (but non-zero) turbulence levels (small Reb), there is
a strong tendency for incomplete mixing of salinity when temperature is completely mixed
(small d). If this is widespread in the deep ocean, models that mix both constituents at
the same rate must be reconsidered.
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